Bycatch weight, composition and preliminary estimates of the impact of bycatch reduction devices in Queensland's trawl fishery

Queensland Department of Primary Industries and Fisheries

1Department of Anatomy and Developmental Biology, University of Queensland

2Australian Maritime College

Project No. 2000/170
Bycatch weight, composition and preliminary estimates of the impact of bycatch reduction devices in Queensland's trawl fishery.

Report to the Fisheries Research and Development Corporation

Project No. 2000/170

May 2007

This report provides quantitative information on the effects of turtle excluder devices (TEDs) and bycatch reduction devices (BRDs) on the catch rates of bycatch, prawns, scallops and byproduct species, such as Moreton Bay bugs and Balmain bugs, in Queensland's major trawl fishing sectors. It also provides biological information on, and management advice for several species referred to in the Fishery Management Plan as the permitted species. Several recommendations are included for reducing bycatch in the trawl fishery and for sustaining stocks of the permitted species.

The Department of Primary Industries and Fisheries (DPI&F) seeks to maximise the economic potential of Queensland’s primary industries on a sustainable basis.

This publication has been compiled by A. J. Courtney of Sustainable Fisheries.

While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this report.

© The State of Queensland, Department of Primary Industries and Fisheries 2007.

Copyright protects this material. Except as permitted by the Copyright Act 1968 (Cth), reproduction by any means (photocopying, electronic, mechanical, recording or otherwise), making available online, electronic transmission or other publication of this material is prohibited without the prior written permission of the Department of Primary Industries and Fisheries, Queensland.

Inquiries should be addressed to:

Intellectual Property and Commercialisation Unit
Department of Primary Industries and Fisheries
GPO Box 46
Brisbane Qld 4001

or

copyright@dpi.qld.gov.au
Tel: +61 7 3404 6999
Table of contents

1 **Objectives** .. 1

2 **Non-technical Summary** .. 2

3 **Background** ... 5

4 **Need** ... 6

5 **Quantifying the effects of bycatch reduction devices in Queensland’s (Australia) shallow water eastern king prawn (Penaeus plebejus) trawl fishery** 8

 5.1 **Abstract** .. 8

 5.2 **Introduction** ... 8

 5.3 **Methods and materials** .. 9

 5.3.1 Spatial distribution of sampling ... 10

 5.3.2 TED and BRD codend treatments ... 10

 5.3.3 Measuring and sampling the catch ... 12

 5.3.4 Calculating catch rates for prawns and bycatch species .. 12

 5.3.5 Statistical design and analysis .. 13

 5.4 **Results** ... 15

 5.4.1 Catch rates and effects of bycatch reduction devices ... 15

 5.4.2 Variation in bycatch assemblages ... 22

 5.5 **Discussion** ... 24

 5.5.1 Evaluating the performance of the TED and radial escape section BRD ... 24

 5.5.2 Variation in bycatch composition ... 25

 5.5.3 Total annual bycatch production and the effects of bycatch reduction devices 25

 5.6 **Conclusion** ... 26

 5.7 **References** .. 27

6 **Quantifying the effects of bycatch reduction devices in the north Queensland tiger/endeavour prawn fishery** ... 29

 6.1 **Abstract** .. 29

 6.2 **Introduction** ... 29

 6.3 **Materials and Methods** ... 30

 6.3.1 Spatial distribution of sampling ... 30

 6.3.2 TED and BRD codend treatments ... 30

 6.3.3 Measuring and sampling the catch ... 31

 6.3.4 Statistical design and analyses .. 32

 6.3.5 Bycatch species catch rates and power analysis .. 32

 6.4 **Results** ... 32

 6.4.1 Catch rates and the effects of bycatch reduction devices ... 32

 6.4.2 Effects of codend type on bycatch species ... 35

 6.4.3 Variation in bycatch community structure and the effects of the TED and radial escape section BRD ... 41

 6.4.4 Monitoring and the power to detect change in bycatch species catch rates ... 43

 6.5 **Discussion** ... 45

 6.5.1 Evaluating the performance of the TED and radial escape section BRD ... 45

 6.5.2 Variation in bycatch composition ... 46

 6.5.3 Monitoring bycatch species catch rates ... 47

 6.6 **References** .. 47
7 Round scallops and square meshes: effects of bycatch reduction devices in the Queensland (Australia) scallop trawl fishery ... 48

7.1 Abstract .. 48
7.2 Introduction .. 48
7.3 Methods .. 50
 7.3.1 Research charter design .. 50
 7.3.2 Sampling the catch ... 51
 7.3.3 In the laboratory ... 53
 7.3.4 Calculating catch rates of scallops and bycatch species 53
 7.3.5 Statistical design and analyses .. 54
7.4 Results ... 55
 7.4.1 Effects of codend type on bycatch and scallops ... 57
 7.4.2 Effects of codend type on Moreton Bay bugs ... 58
 7.4.3 Effects of codend type on bycatch species .. 59
 7.4.4 Variation in bycatch community structure .. 67
7.5 Discussion ... 68
 7.5.1 Extrapolating the charter results to the scallop fishery 69
 7.5.2 Effects on scallops ... 70
 7.5.3 Effects on Moreton Bay bugs ... 70
 7.5.4 Effects on individual bycatch species ... 71
 7.5.5 Variation in bycatch community structure .. 71
7.6 References .. 72

8 Winter (diver) whiting trawl bycatch in southern Hervey Bay 75

8.1 Abstract .. 75
8.2 Introduction .. 75
8.3 Methods .. 77
8.4 Results and Discussion .. 80
 8.4.1 Estimation of trawling effort from logbook data .. 80
 8.4.2 Spatial precision in reporting .. 80
 8.4.3 Trends in reported catch of winter whiting .. 83
 8.4.4 VMS data ... 83
 8.4.5 Effects of TED and BRD on winter whiting catches 86
 8.4.6 Effects of TED and BRD on other bycatch .. 87
 8.4.7 Effects on prawn catch rates .. 88
 8.4.8 Size-frequency distribution of winter whiting catch 89
 8.4.9 Estimation of changes in winter whiting bycatch .. 90

9 Evaluating the effects of a turtle excluder device (TED) and square mesh codend bycatch reduction device (BRD) in Queensland’s deepwater eastern king prawn (Penaeus plebejus) trawl fishery ... 92

9.1 Abstract .. 92
9.2 Introduction .. 92
9.3 Methods .. 93
 9.3.1 Research charter and codend treatments .. 93
 9.3.2 Measuring and sampling the catch ... 95
 9.3.3 Statistical design and analysis ... 96
 9.3.4 Bycatch species catch rates and statistical power .. 96
9.4 Results ... 96
 9.4.1 Effects on bycatch and prawn catch rates .. 96
 9.4.2 Effects on Balmain bugs (Ibacus spp.) ... 98
12.1.7 Pipehorses (Solegnathus spp.).. 147
12.1.8 Pinkies (Nemipterus spp.).. 148

12.2 References .. 150

13 The fishery and reproductive biology of barking crayfish, Linuparus trigonos (Von Siebold, 1824) in the Queensland East Coast Trawl Fishery............. 156

13.1 Abstract .. 156
13.2 Introduction ... 156
13.3 Materials and Methods .. 157
13.4 Results .. 159
 13.4.1 Analysis of logbook data ... 159
 13.4.2 Sex ratio and length-frequency distributions ... 160
 13.4.3 Size at maturity ... 160
 13.4.4 Size-specific brood fecundity and egg size .. 161
13.5 Discussion .. 162
13.6 References .. 164

14 The biology, population dynamics and minimum legal size of three spot crabs Portunus sanguinolentus.. 166

14.1 Abstract .. 166
14.2 Introduction ... 166
14.3 Methods.. 167
 14.3.1 Sampling the crabs .. 167
 14.3.2 Parameter estimation .. 167
 14.3.3 Yield-per-recruit analysis .. 168
14.4 Results and Conclusions .. 168
 14.4.1 Length frequencies, morphometrics and reproductive biology 168
 14.4.2 Growth ... 170
 14.4.3 Yield-per recruit-anales .. 172
 14.4.4 Estimating the optimum age (and size) at first capture 173
14.5 References .. 176

15 Species composition, spatial distribution, relative abundance and reproductive biology of mantis shrimps in Moreton Bay, Queensland............. 177

15.1 Abstract .. 177
15.2 Introduction ... 177
15.3 Materials and Methods .. 178
 15.3.1 Sample collection and processing .. 178
 15.3.2 Data analysis ... 179
15.4 Results .. 179
 15.4.1 Analysis of logbook data ... 179
 15.4.2 Sample details .. 180
 15.4.3 Species composition .. 181
 15.4.4 Species distribution and abundance ... 182
 15.4.5 Monthly length-frequency distributions and growth of Oratosquilla stephensoni... 188
 15.4.6 Reproductive activity of female Oratosquilla stephensoni........................... 189
 15.4.7 Reproductive activity of female Oratosquilla interrupta............................. 190
15.5 Discussion .. 191
15.6 References .. 193
16 Exploring associations between pipehorse (Solegnathus cf. hardwickii) abundance and bycatch faunal communities in the Queensland trawl fishery ... 195

16.1 Abstract ... 195

16.2 Introduction .. 196

16.3 Methods ... 196
 16.3.1 The 2000 Long-Term Monitoring scallop fishery-independent survey 196
 16.3.2 Catch rates of bycatch ... 198
 16.3.3 The shallow water eastern king prawn charter ... 198
 16.3.4 Statistical analyses .. 198
 16.3.5 Abiotic factors affecting bycatch composition ... 199

16.4 Results .. 199
 16.4.1 Pipehorses and bycatch from the 2000 Long-Term Monitoring scallop fishery- independent survey ... 199
 16.4.2 Pipehorses and bycatch faunal communities in the shallow water eastern king prawn fishing grounds .. 204

16.5 Discussion .. 209
 16.5.1 Conclusions from MDS ... 209

16.6 References ... 210

17 Aspects of the reproductive biology and growth of Balmain bugs Ibacus spp. (Scyllaridae) ... 212

17.1 Abstract ... 212

17.2 Introduction .. 212

17.3 Materials and methods .. 213
 17.3.1 Sample processing .. 213
 17.3.2 Fecundity and egg size .. 215
 17.3.3 Population parameter estimates .. 215

17.4 Results .. 215
 17.4.1 Species accounts .. 217

17.5 Discussion .. 223

17.6 References ... 227

18 Observations on the distribution, growth and reproductive biology of Nemipterus theodorei and Nemipterus aurifilum caught in the Queensland (Australia) East Coast Trawl Fishery ... 230

18.1 Abstract ... 230

18.2 Introduction .. 230

18.3 Materials and methods .. 230
 18.3.1 Sampling methods .. 230
 18.3.2 Ageing and growth .. 231
 18.3.3 Reproductive biology ... 232

18.4 Results .. 232
 18.4.1 Length-frequency analyses .. 233
 18.4.2 Length-weight relationships .. 234
 18.4.3 Age and growth .. 236
 18.4.4 Reproductive biology ... 236

18.5 Discussion .. 238
 18.5.1 Management advice .. 238

18.6 References ... 238
List of Tables

Table 5.3.1. The 12 combinations of codend type and net position applied to the research charter treatment protocol. .. 13
Table 5.4.1. The effects of the radial escape section BRD and TED on the catch rates of bycatch and target prawn species Penaeus plebejus based on 120 individual net tows (60 trawls x 2 nets). Generalised linear modelling was used to quantify codend treatment effects. Significant differences between treatments (P < 0.05) are bolded and identified by different alphabetic characters (A, B, C or D). Parameter estimates were proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors in parentheses.... 18
Table 5.4.2. Catch rates of the more frequently encountered bycatch species caught during the research charter and the effects of the radial escape section BRD and TED on their catch rates. Generalised linear modelling was used to quantify effects. Significant effects (P < 0.05) are bolded. Treatments with the same alphabetic character (A, B, C or D) were not significantly different. Distribution types used in the models were N = normal, G = gamma and B = binomial. The parameter estimates have been proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors (S.E.) in parentheses.... 20
Table 5.4.3. Effects of the TED and radial escape section BRD on bycatch species’ lengths (in mm). Significant effects (P < 0.05) are bolded. Lengths were normally distributed. Treatments with the same alphabetic character (A, B, C or D) were not significantly different. Standard errors in parentheses. .. 21
Table 6.3.1. The codend treatment protocols applied during the north Queensland tiger/endeavour prawn charter, based on a back-to-back Latin square design. Each codend type was tested in each net position on two nights. .. 31
Table 6.4.1. The effects of the radial escape section BRD and TED on the catch rates of bycatch and marketable size prawns based on 192 individual net tows (48 trawls x 4 nets). Generalised linear modelling was used to quantify codend treatment effects. Significant differences between treatments (P < 0.05) are bolded and identified by different alphabetic characters (A, B, C or D). Parameter estimates were proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors in parentheses. 35
Table 6.4.2. Effects of codend type on the catch rates of the more commonly encountered bycatch species based on 192 measures (48 sites trawled x 4 nets). Generalised linear
modelling was used to quantify the effects. Significant differences between codends ($P < 0.05$) are bolded and identified by different alphabetic characters (A, B, C or D). Distribution types used in the models were N = normal, G = gamma and B = binomial. For normal and gamma distributed data, the parameter estimates have been proportionally scaled so they could be compared to a standard net parameter value of 1. All binomial data are probabilities of capture. Standard errors in parentheses.

Table 6.4.3. Effects of the TED and radial escape section BRD on the length of the more common bycatch species encountered in the research charter undertaken in the north Queensland tiger/endeavour prawn fishery. Significant effects ($P < 0.05$) are bolded. Analyses were undertaken using normally distributed length measures. Treatments with the same alphabetic character (A, B, C or D) were not significantly different. Standard errors in parentheses.

Table 6.4.4. R-statistic values and significance levels for differences in bycatch community structure between latitudes. Latitudinal groups are rounded to the nearest half degree.

Table 7.4.1. The sampling protocol for codend type and net position applied during the charter. The number of sites trawled each night is shown in brackets.

Table 7.4.2. Effects of codend type on the catch rates of the commonly encountered bycatch species based on 236 measures (59 sites trawled x 4 nets). Generalised linear modelling was used to quantify the effects. Significant differences between codends ($P < 0.05$) are bolded and identified by different alphabetic characters (A, B, C or D). Parameter estimates were proportionally scaled so they could be compared to a standard net parameter value of 1. Standard errors in parentheses.

Table 7.4.3. Effects of codend type on the catch rates of Scyllarid lobster (T. orientalis) byproduct based on 236 measures (59 sites trawled x 4 nets). Generalised linear modelling was used to quantify the effects. Significant differences between codends ($P < 0.05$) are bolded and identified by different alphabetic characters (A, B, C or D). Parameter estimates were proportionally scaled so they could be compared to a standard net parameter value of 1. Values for the binomial data (B) are probabilities of capture. Standard errors in parentheses.

Table 7.4.4. Predicted mean length (in mm) of bycatch species from the four codend types based on 236 measures (59 sites trawled x 4 nets). Generalised linear modelling was used to estimate the means using a normal distribution with identity link function. Significant differences between codends ($P < 0.05$) are bolded and identified by different alphabetic characters (A, B, C or D). Standard errors in parentheses.

Table 7.4.5. Species that contributed 90% of the dissimilarity between the shallow (20 m) and deepwater (50 m) groups in the Queensland scallop fishery bycatch.

Table 7.4.6 R-statistic values and significance levels for differences in bycatch community structure between codend types.

Table 8.4.1. Estimated total effort (boat-days) in Grid V33 by year, inside and outside the SHBTC area, resulting from the proportional allocation of records reported at the lowest level of precision. Records for sub-grids straddling the northern boundary of the SHBTC were allocated on the basis 50% inside and 50% outside the closure area.

Table 8.4.2. Reported winter and unspecified whiting catches (kg) inside the SHBT closure area, by year. Where there are two figures separated by a slash, the first refers to the April–May period and the latter the whole of year.

Table 8.4.3. Number of trawlers considered to have been fishing within the SHBTC (during April and May) each year. The number of (hourly) interrogations may be considered a proxy for trawling effort.

Table 8.4.4. Observed mean catch rate of whiting (kg nautical mile$^{-1}$) from the four net types in each area. Each mean is based on 12 observations (4 nights by 12 trawls towing 2 nets = 96 observations).

Table 8.4.5. Accumulated analysis of variance showing the effects of codend type on whiting catch rate.
Table 10.4.1. The number of times each codend type was sampled during the deepwater eastern king prawn charter. ...89

Table 10.4.2. Number of individual net trawls for each codend type in each sector. There were so many different TEDs, BRDs, and combinations of the two, used by fishers that four broad categories were identified to represent all possibilities. These were 1) Standard codend (i.e. no BRD or TED), 2) TED only, 3) BRD only, and 4) TED and BRD together.117

Table 10.4.3. Mean catch rates of total bycatch, bycatch and target prawn species in the shallow water (< 50 fm) eastern king prawn Penaeus plebejus fishery based on 88 individual net tows obtained by opportunistically sampling on board fishing vessels. Generalised linear modelling was used to quantify the effects of codend type. Significant differences between treatments (P < 0.05) are bolded and identified by different alphabetic characters (A, B, C or D). The parameter estimates have been proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors in parentheses. ..119
< 0.05) are bolded and identified by different alphabetic characters (A, B, C or D). The parameter estimates have been proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors in parentheses. ... 121

Table 10.4.6. Mean catch rates of total bycatch, bycatch and target prawn species *Penaeus latisulcatus*, *Penaeus semisulcatus*, *Metapenaeus endeavouri* and *Metapenaeus ensis* from the north Queensland tiger/endeavour prawn fishery based on 128 individual net tows obtained by opportunistically sampling on board fishing vessels. Generalised linear modelling was used to quantify the effects of codend type. Significant differences between treatments (P < 0.05) are bolded and identified by different alphabetic characters (A, B, C or D). The parameter estimates have been proportionally scaled so they can be compared to a standard net parameter value of 1. Standard errors in parentheses. ... 121

Table 10.4.7. Predicted probabilities of capturing the orange-spotted catshark (*Asymbolus sanguinolentus*) and urolophids (*Trygonoptera testacea* and *Urolophus kapalensis*) based on 120 trawls undertaken during the shallow water eastern king prawn charter. Standard errors in parenthesis. ... 128

Table 11.4.1. Elasmobranch species recorded in the QECTF bycatch based on results from the present study and those Stobutzki et al. (2001). BP, banana prawn; EKP, eastern king prawn; HB, Hervey Bay; SC, scallop; TE, northern tiger/endeavour prawn. 128

Table 11.4.2. Elasmobranch bycatch from the shallow water eastern king prawn charter. 130

Table 11.4.3. Predicted probabilities of capturing the eastern shovelnose ray (*Aptychotrema rostrata*) and urolophids (*Trygonoptera testacea* and *Urolophus kapalensis*) based on 120 trawls undertaken during the shallow water eastern king prawn charter. Standard errors in parenthesis. ... 130

Table 11.4.4. Elasmobranch bycatch from the deepwater eastern king prawn charter. 132

Table 11.4.5. Predicted probabilities of capturing the orange-spotted catshark (*Asymbolus rubiginosus*), the argus skate (*Dipturus polyommata*) and the sawtail shark (*Galeus boardmani*) based on 130 trawls undertaken during the deepwater eastern king prawn charter. Standard errors in parenthesis. ... 132

Table 11.4.6. Elasmobranch bycatch from the scallop fishery charter. 133

Table 11.4.7. Predicted probabilities of capturing the eastern shovelnose ray (*Aptychotrema rostrata*), the blue-spotted maskray (*Dasyatis kuhlii*) and the painted maskray (*Dasyatis lata*) based on 236 trawls undertaken during the scallop fishery charter. Standard errors in parenthesis. ... 133

Table 12.1.1. Distributions, depth ranges and maximum sizes of Queensland’s *Ibacus* species ... 139

Table 12.1.2. Von Bertalanffy growth parameter estimates for *I. peronii* and *I. chacei*........ 140

Table 12.1.3. List of the maximum size, depth range and distribution of Queensland mantis shrimp species that attain sizes greater than or equal to 100 mm in total length 143

Table 12.1.4. Distributions, depth ranges and maximum sizes of Queensland cuttlefish species .. 144

Table 12.1.5. Age and growth increments of *S. pharonis* and *S. elliptica* 145

Table 12.1.6. Distributions, depth ranges and known biological information of commercially important octopuses from Queensland waters. ... 147

Table 12.1.7. Population parameter estimates for Queensland *Nemipterid* species. Note: Parameter estimates were derived from Fishbase 99 using the references cited below 150

Table 13.3.1. Macroscopic gonad descriptions of gonadal development and mean gonadosomatic indices of *Linuparus trigonus* (Von Siebold, 1824) ... 158

Table 14.4.1. Morphometric regression relationships for three spot crabs *Portunus sanguinolentus* .. 169

Table 14.4.2. Published and estimated values of K and L∞ for *Portunus sanguinolentus* 170

Table 15.3.1. Macroscopic descriptions of ovarian development in mantis shrimp 179

Table 15.4.1. Details of the total numbers of mantis shrimp collected and their minimum, maximum and mean carapace lengths (all data pooled) .. 181

Table 15.4.2. Regression parameters for the carapace length-total weight (CL-TW) relationship for six species of mantis shrimp (all data pooled) .. 181

Table 15.4.3. Summaries of mantis shrimp catch rates from Moreton Bay 183
Table 16.4.1. Bycatch sampling sites and depths from the 2000 Long-Term Monitoring scallop survey grounds where pipehorses (S. cf. hardwickii) were obtained.202
Table 16.4.2. Species that contribute to the within-group similarity for the “30 m depth faunal grouping”, based on the 2000 scallop fishing grounds bycatch data. From “Simper” (similarity percentages) analysis (PRIMER software) using standardised presence/absence transformed catch rate data. * indicates positive correlation with S. cf. hardwickii. ...203
Table 16.4.3. Species that contribute to the within-group similarity for the “40 m depth faunal grouping”, based on the 2000 scallop fishing grounds bycatch data. From “Simper” (similarity percentages) analysis (PRIMER software) using standardised presence/absence transformed catch rate data. * indicates positive correlation with S. cf. hardwickii. ...203
Table 16.4.4. Species that contribute to the within-group similarity for the “80 m depth faunal grouping” from the MDS of the shallow water eastern king prawn bycatch. Based on “Simper” (similarity percentages) analysis (PRIMER software) using standardised square-root transformed catch rate data. * indicates positive correlation with S. cf. hardwickii. ...207
Table 17.3.1. Macroscopic descriptions of ovarian development in Ibacus spp.214
Table 17.4.1. Details of sample collection dates, depth collected and total numbers of Ibacus alticrenatus, Ibacus brucei and Ibacus chacei...216
Table 17.4.2. Regression parameters for the carapace length (CL) – total weight (TW) relationship and carapace width (CW) – carapace length relationship for Ibacus alticrenatus, Ibacus brucei and Ibacus chacei ...216
Table 17.4.3. Moul increments of male and female Ibacus chacei. Pre-moult carapace lengths were determined from peak modal size classes indicated in ...223
Table 17.4.4. Estimated von Bertalanfly growth parameters for Ibacus chacei223
Table 18.3.1. Criteria for macroscopic classification of Nemipterus spp. ovaries232
Table 18.4.1. Sample sizes (number of fish) contributing to biological analyses conducted on N. theodorei and N. aurifilum ...232
Table 18.4.2. Summary of distribution data for N. theodorei and N. aurifilum based on the number of individuals caught during research charters and opportunistic sampling aboard commercial vessels. Sample sizes for N. theodorei and N. aurifilum were 3356 and 876 respectively. Standard errors in brackets...233
Table 18.4.3. Mean length (mm)-at-age for N. theodorei and N. aurifilum based individuals aged at the Central Ageing Facility. Methods for ageing are described in Appendix 8. Standard errors in brackets...236
Table 18.4.4. von Bertalanfly growth parameter estimates for male and female N. theodorei and N. aurifilum ...236

List of Figures

Figure 5.3.1 Design of the radial escape section BRD, TED and the four net treatments used in the charter. A = Plan view of the radial escape section BRD; B = Elevation of the radial escape section BRD; C = Plan or elevation of the funnel used in the radial escape section BRD; D = Plan of the modified Wick’s TED; E = Elevation of the modified Wick’s TED. Lower approximately 200 mm. T and N refer to transverse and normal meshes, respectively.11
Figure 5.3.2. The radial escape section BRD and TED after construction. Note the large escape meshes are restricted to the upper half of the codend circumference...........................12
Figure 5.4.1. Location of the 60 two-nautical mile trawl sites in the shallow water eastern king prawn fishery that were sampled during the experimental research charter. Measures of prawn catches, bycatch and bycatch sub-samples were obtained from two nets (port and starboard) towed simultaneously at each location. Each “transect” is comprised of approximately 50 location data point readings taken directly from the vessel’s global positioning system at one-minute intervals while trawling and imported into a geographic information mapping program (ArcVIEW) for presentation. ...15
Figure 5.4.2. The effect of depth on catch rates of prawns and bycatch in the Queensland shallow water eastern king prawn trawl fishery, based on measurements from the experimental research charter. Dotted lines are 95% confidence intervals of the mean.16
Figure 5.4.3. Two-dimensional MDS of bycatch sub-samples from an experimental research charter undertaken in the Queensland shallow water eastern king prawn trawl fishery. Catch
Figure 6.4.1. Location of the 48 two-nautical mile trawl transects sampled during the north Queensland tiger/endeavour prawn charter in May 2002. The vessel towed four nets (i.e., quad gear) simultaneously resulting in 192 (i.e., 48 trawls x 4 nets) measurements of bycatch and prawn catches. Location of the 30' x 30' logbook grids is also provided.

Figure 6.4.2. The flatback turtle (Natator depressus) caught aboard the QDPIF RV Gwendoline May during the charter undertaken in the north Queensland tiger/endeavour prawn fishery. The turtle was caught in the standard net (i.e., no TED or BRD installed). Note the partitioning of the sorting tray which facilitated separate, and therefore more accurate, processing and measuring of the catch from the four nets.

Figure 6.4.3. Two-dimensional MDS of bycatch sub-samples from an experimental research charter undertaken in the north Queensland tiger/endeavour prawn fishery. Catch rates were square-root transformed. The analyses used all 192 sub-samples and 122 species. Note the clustering of bycatch assemblages on (A) depth and (B) latitude, but not on (C) codend type.

Figure 6.4.4. The power to detect change in bycatch species catch rates in the north Queensland tiger/endeavour prawn fishery for two possible monitoring programs; one based on 30 trawl samples and the other based on 300. The upper graph refers to species’ catch rates that conform to a gamma distribution, while the two lower graphs consider catch rate data that are best described as binomial. Two levels of reduction are considered: 40% and 80%.

Figure 7.3.1. A – The square mesh codend was constructed using four identical pieces of 4-inch (100 mm), 6 mm polyethylene mesh. Each piece of mesh was 18 bars wide and 20 bars long and, sewn together, resulted in a single tube of mesh 36 bars round by 40 bars long. B – Plan view of the square mesh codend BRD. A small length of diamond mesh was sewn on the aft edge of the square mesh codend to facilitate the addition of drawstrings. Similarly, a section of diamond mesh was added to the forward edge of the square mesh codend to allow the codend to be sewn onto the nets used during the charter. C – Plan view of the TED. D – Elevation of the TED.

Figure 7.3.2. The square mesh codend BRD under construction. Note the large open squares (50 mm x 50 mm). The 12 mm polyethylene rope was selvedged along the sides to take the weight of the bycatch and prevent distortion of the mesh.

Figure 7.4.1. Location of the 59 sites trawled during the charter in the Queensland scallop fishing grounds. At each location four nets were towed, each with a different type of codend, resulting in 236 measurements of bycatch and scallop catch rates.

Figure 7.4.2. Size-frequency distribution scallops from the standard codend and from the net with the TED and square mesh codend.

Figure 7.4.3. Multidimensional scaling of 82 species of bycatch from 236 trawl locations in the Queensland scallop fishery showing group formations based on latitude. Legend refers to latitudes rounded to the nearest 0.5 °S.

Figure 7.4.4. Size-frequency distribution scallops from the standard codend and from the net with the TED and square mesh codend showing group formations based on latitude.

Figure 8.2.1. Chart of Hervey Bay, showing location of the Southern Hervey Bay Trawl Closure (SHBTC) Area (cross-hatched). Also shown are the northern and eastern boundaries of the half-degree Grid V33 and the “inshore” gear-limitation area (hatched).

Figure 8.3.1. The fisheye BRD as used by Mr Reg Saunders on the Lewis Venture (FPPX). The effects of this device on prawn, whiting and bycatch catch rates were evaluated.

Figure 8.3.2. Location of sampling sites inside and outside the SHBTC area.

Figure 8.4.1. Number of boat-days in April and May each year on which fishing locations were reported at three levels of spatial precision (0.25: grid; 0.05: sub-grid; 0.008: lat-long) in Grid V33.

Figure 8.4.2. Comparison of the proportional representation of the 14 most important species in catches from vessels reporting their fishing locations at two levels of precision (30-minute Grid, where sub-grids are not identifiable, and six-minute sub-grid or lat-long, where sub-grids are either specified or derivable.)
trawl samples and one based on 300.

...for species whose catch rates conform to either a gamma or eastern king prawn fishery. Examples are provided for relatively small (40% reduction) and numbers (ov = ovigerous) for each location area are detailed in parentheses.

Queensland's east coast. Logbook grids that reported < 0.3 t per year (< 5% of reported trigonus, (Von Siebold, 1824), between January 2000 and December 2002 along...

Figure 13.4.2. Comparison of yearly changes in fishing effort (boats and boat-days) between all of Grid V33 and the approximate closure area (i.e. all subgrids falling within or largely within the closure area). .. 82

Figure 8.4.4. Trend in estimated trawling effort (boat days) over the period 1998–2002 inside the SHBTC during April and May. .. 83

Figure 8.4.5. Distribution of winter whiting Sillago maculata catches from the trawl charter. Note the difference in apparent abundance between the area of the SHBTC and that outside. .. 87

Figure 8.4.6. Length-frequency distribution of winter whiting (Sillago maculata) from the trawl survey. Note that as all winter whiting were retained (rather than sub-sampled), this represents the sum total of all of this species taken in the course of 48 x 1 nautical mile trawl shots with two nets. .. 89

Figure 9.3.1. Location of the 65 two-nautical mile trawls undertaken during the 10-night charter in July 2002. Depths ranged from 60 to 90 fathoms (110–165 m). .. 94

Figure 9.3.2. The square mesh codend BRD that was evaluated during the deepwater eastern king prawn charter was constructed from 17/8 inch black braided polyethylene. The square mesh section was 66 bars round and 76 bars long. Note that a short section of diamond mesh was added to the aft edge of the square mesh so that the drawstrings could be attached in the normal manner. The rope was added to reduce knot slippage. 95

Figure 9.4.1. Carapace length frequency distributions for prawns caught in each codend type during the deepwater eastern king prawn charter. There was no significant difference in the catch rate or size frequency of prawns caught between the four codend types. Each codend type had the same average prawn size. .. 98

Figure 9.4.2. Predicted catch rates of Balmain bugs I. chacei per two nautical mile trawl based on 130 (65 sites x 2 nets) observations obtained during the deepwater eastern king prawn charter. Codends with the TED significantly reduced catch rates, particularly for the larger size classes. .. 99

Figure 9.4.3. The power to detect change in bycatch species catch rates in the deepwater eastern king prawn fishery. Examples are provided for relatively small (40% reduction) and large changes (80% reduction) for species whose catch rates conform to either a gamma or binomial distribution. Two possible monitoring programs were considered, one based on 30 trawl samples and one based 300. .. 105

Figure 9.4.4. MDS of the deepwater eastern king prawn fishery bycatch showing groupings based on depth (global R = 0.311). Legend refers to depth (m). .. 106

Figure 9.4.5. MDS of bycatch from the deepwater eastern king prawn fishery showing strong evidence (global R = 0.429) of latitudinal grouping. Legend in latitude (degrees south). 110

Figure 10.4.1. Location of the 65 two-nautical mile trawls undertaken during the 10-night charter in July 2002. Depths ranged from 60 to 90 fathoms (110–165 m). .. 118

Figure 11.4.1. Catch-frequency distributions of elasmobranchs captured in the eastern king prawn sector. (a) All species, shallow water component; (b) Aptychotrema rostrata, shallow water component; (c) Urolophids combined, shallow water component; (d) All species, deep water component. .. 129

Figure 11.4.2. Size-frequency distributions of elasmobranchs captured during the shallow water eastern king prawn charter. (a) Aptychotrema rostrata; (b) Urolophids combined (Trygonoptera testacea and Urolophus kapalensis). .. 131

Figure 12.1.1 Approximate value of "permitted species" based on reported logbook landings from 2000 – 2002. .. 137

Figure 13.3.1. Approximate value of "permitted species" based on reported logbook landings from 2000 – 2002. .. 131

Figure 13.3.2. Monthly total catch; b, total effort; and, c, catch-per-unit effort of Linuparus trigonus, (Von Siebold, 1824), between January 2000 and December 2002 along Queensland’s east coast. Logbook grids that reported < 0.3 t per year (< 5% of reported catches) have been omitted for clarity. .. 157

Figure 13.4.1. a, Monthly total catch; b, total effort; and, c, catch-per-unit effort of Linuparus trigonus, (Von Siebold, 1824), between January 2000 and December 2002 along Queensland’s east coast. Logbook grids that reported < 0.3 t per year (< 5% of reported catches) have been omitted for clarity. .. 159

Figure 13.4.2. Size-frequency distributions of male and female Linuparus trigonus (Von Siebold, 1824). Values on the x-axis are maximum values for each 5 mm size class interval. .. 160
both sexes and the variability in growth parameters (K and L_∞) for male and female Portunus sanguinolentus (yields of both sexes have been combined). The median occurs at 0.88 years and January 2003.

Assuming an instantaneous rate of fishing mortality of approximately 0.7 per year, the optimum age at first capture is between 0.5 and 1.5 years.

The distribution of the optimum age at which to harvest Portunus sanguinolentus (yields of both sexes have been combined). The median occurs at 0.88 years which equates to approximately 100 mm carapace width. This simulation takes account of the both sexes and the variability in growth parameters (K and L_∞), length-weight parameters (a and b), fishing mortality and natural mortality (see parameter assumption distributions below).

Distribution assumptions for key population parameter estimates (Weight at L_∞, Winf; Brody growth coefficient, K; and the instantaneous rate of natural mortality, M) for male (top three distributions) and female (next three distributions) three spot crabs, Portunus sanguinolentus. The age at which the crabs are first harvested was also assumed to vary and is represented by parameter t_c (bottom distribution).

Spatial and temporal trends of reported mantis shrimp landings from the Queensland East Coast Trawl Fishery.

Proportional catches by individuals and weight of mantis shrimp caught during the 2001 and 2002 Moreton Bay trawl surveys.

Spatial distribution and abundance of O. stephensoni by weight (g) and number in 2001.

Spatial distribution and abundance of O. stephensoni by weight (g) and number in 2002.

Spatial distribution and abundance of O. interrupta by weight (g) and number in 2001.

Spatial distribution and abundance of O. interrupta by weight (g) and number in 2002.

Monthly carapace length-frequency distributions of female Oratosquilla stephensoni (all data pooled). Note: y-axis ranges vary.

Monthly carapace length-frequency distributions for male Oratosquilla stephensoni (all data pooled). Note: y-axis ranges vary.

Seasonal changes in gonadosomatic indices (GSI), sex ratio, mated frequency and ovarian development for female Oratosquilla stephensoni.

Seasonal changes in gonadosomatic indices (GSI), sex ratio, mated frequency and ovarian development for female Oratosquilla interrupta.

The location of 122 sites where bycatch was sampled during the 2000 Long Term Monitoring scallop fishery-independent survey. Pipehorses were present in trawls from seven of the 122 locations.
Figure 16.4.1. Multidimensional scaling of 122 samples of bycatch from the QFS 2000 scallop fishing ground survey, based on the presence/absence of 136 taxa. Each sample is labelled based on the site it was obtained from. Legend for lower graph is degrees latitude (to the nearest 0.1° S). ... 200
Figure 16.4.2. Multidimensional scaling of 122 samples of bycatch from the QFS 2000 Long-Term Monitoring scallop fishing ground survey, based on presence/absence of 136 taxa. Upper graph legend refers to the depth (m) category of each sample. The lower graph shows the distribution of S. cf. hardwickii relative to the other samples. Circle size is proportional to catch rate. Each sample is labelled with the site it was obtained from. ... 201
Figure 16.4.3. Location of the 60 sites trawl sampled in the shallow water eastern king prawn fishing grounds in October 2001. Each trawl was two nautical miles long. Locations where pipi were caught are also provided. .. 205
Figure 16.4.4. Multidimensional scaling of 120 samples (60 sites x 2 nets) of bycatch from the shallow water eastern king prawn charter in October 2001, based on the square-root transformation of catch rates. The upper graph shows clustering of bycatch groupings based on depth (to the nearest 10 m). The lower graph shows the distribution of S. cf. hardwickii in relation to the depth categories. Circle size reflects catch rate. Note the strong clustering of pipi at certain spatial locations and depths. .. 208
Figure 17.3.1. Sample location sites. Crosses indicate exact locations where samples were obtained. ... 214
Figure 17.4.1. Carapace length-frequency distributions for male and female Ibacus alticrenatus, Ibacus brucei and Ibacus chacei (all dates and locations pooled). Arrows indicate peak values of each size class mode. .. 217
Figure 17.4.2. Seasonal changes in mean gonadosomatic index (GSI ± S.E.) from adult female Ibacus chacei (> 54 mm CL) caught off (A) Mooloolaba or (B) Gladstone–Bundaberg from October 2001 to March 2003. ■ Indicates samples where ovigerous females were present. Values that are significantly different have different superscripts (P < 0.05). Sample numbers given in parentheses. ... 218
Figure 17.4.3. Seasonal changes in the proportions of adult female Ibacus chacei caught off Mooloolaba or Gladstone–Bundaberg in relation to ovarian maturation stages 219
Figure 17.4.4. Size-frequency distributions of ovigerous females and scatterplot regressions of brood fecundity and carapace length for Ibacus alticrenatus, Ibacus brucei and Ibacus chacei. Note: y-axis ranges vary. .. 220
Figure 17.4.5. Comparisons of mean egg size (± 95% CI) with egg development for Ibacus alticrenatus, Ibacus brucei and Ibacus chacei. Sample numbers in parentheses. 220
Figure 17.4.6. Monthly carapace length-frequency distributions of female Ibacus chacei. The dotted line outlines the suggested moulting pattern for individuals recruiting to the fishery in February. Note: y-axis ranges vary. .. 221
Figure 17.4.7. Monthly carapace length-frequency distributions for male Ibacus chacei. The dotted line outlines the suggested moulting pattern for individuals recruiting to the fishery in February. Note: y-axis ranges vary. ... 222
Figure 18.3.1. The reported commercial landings of nemipterids (2000–2002) from the Queensland East Coast Trawl Fishery and trawl locations from the opportunistic sampling and research charters where samples were collected. ... 231
Figure 18.4.1. Length-frequency histogram for N. theodorei based on 4738 individuals obtained from trawl samples. Sexes pooled. .. 233
Figure 18.4.2. Length-frequency histogram for N. aurifilum based on 1276 individuals obtained from trawl samples. Sexes pooled. ... 234
Figure 18.4.3 Length-weight relationship for male N. theodorei ... 234
Figure 18.4.4. Length-weight relationship for female N. theodorei .. 235
Figure 18.4.5. Length-weight relationship for male N. aurifilum .. 235
Figure 18.4.6. Length-weight relationship for female N. aurifilum .. 235
Figure 18.4.7. Changes in gonad stage for female N. theodorei between November 2001 and December 2002 based on classifications provided in Table 18.3.1 ... 237
Figure 18.4.8. Gonadosomatic index for male N. theodorei between November 2001 and November 2002. Numbers in brackets indicate sample size ... 237
Figure 18.4.9. Gonadosomatic index for female N. theodorei between November 2001 and November 2002. Numbers in brackets indicate sample size ... 237
PRINCIPAL INVESTIGATOR: Dr A. J. Courtney
ADDRESS: Queensland Department of Primary Industries and Fisheries
Southern Fisheries Centre,
PO Box 76
Deception Bay QLD 4508
Telephone: 07 3817 9582 Fax: 07 3817 9555

1 Objectives

1) Describe the bycatch species composition and catch rates under standard trawl net conditions [non-Turtle Exclusion Devices (TEDs) and non-Bycatch Reduction Devices (BRDs)] in Queensland’s major trawl sectors (eastern king prawn, scallop and tiger/endeavour prawn sectors).

2) Describe the bycatch species composition and catch rates when nets have TEDs and BRDs installed in Queensland’s major trawl sectors (eastern king prawn, scallop and tiger/endeavour prawn sectors).

3) Test and quantify the impact of different combinations of TEDs and BRDs on bycatch and target species against standard nets under controlled experimental conditions using chartered commercial trawlers in the eastern king prawn, scallop and tiger/endeavour prawn sectors.

4) Review the known biology and distribution of all recently approved “permitted fish” species associated with the trawl fishery.

5) Quantify key population parameter estimates, including growth rates, size at maturity, distribution and landings, for all recently approved “permitted fish” species.

6) Apply power analysis to determine how many samples are needed to detect various levels of change in bycatch species catch rates.

7) Provide advice on the guidelines and definitions of BRDs and TEDs so that the Boating and Fisheries Patrol can confidently enforce the regulations.
2 Non-technical Summary

<table>
<thead>
<tr>
<th>OUTCOMES ACHIEVED TO DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• All stakeholders, including the Queensland Fishery Managers, conservation agencies, industry, recreational fishing groups, the public, the Great Barrier Reef Marine Park Authority (GBRMPA) and DEH, are in a much more informed position to comment on how well the fishery management initiatives are reducing bycatch, and perhaps what more needs to be done.</td>
</tr>
<tr>
<td>• Greatly improved understanding of the catch rates and composition of bycatch in each of the major trawl fishery sectors.</td>
</tr>
<tr>
<td>• More fishers are using highly effective square mesh codends in the scallop and eastern king prawn fisheries as a result of the project.</td>
</tr>
<tr>
<td>• The project demonstrated that bycatch rates in the scallop fishery can be reduced by 77% if square mesh codend BRDs are made mandatory in this sector with TEDs. This large reduction can be achieved with no loss of marketable scallops and with 63% fewer undersize scallops being caught.</td>
</tr>
<tr>
<td>• Improved understanding of the impacts of trawling on species of high conservation or recreational value.</td>
</tr>
<tr>
<td>• The project showed fishers and managers how to reduce the incidental catch rate of stout whiting caught in prawn trawl nets by 57%.</td>
</tr>
<tr>
<td>• Greatly improved understanding of the elasmobranch bycatch in the trawl fishery, and the effects of TEDs and BRDs upon them.</td>
</tr>
<tr>
<td>• Stakeholders are in a more informed position to determine whether the bycatch composition in each of the major sectors is likely change as a result of TEDs and BRDs.</td>
</tr>
<tr>
<td>• The accuracy of standardised catch rates and stock assessments for prawns, scallops and bugs has improved because the project quantified the effects of TEDs and BRDs on them.</td>
</tr>
<tr>
<td>• Queensland fishery managers are in a stronger position to discuss the value of bycatch monitoring programs, to decide upon their implementation and to provide input to their design.</td>
</tr>
<tr>
<td>• Through the project staff involvement with the Technical Working Group, the design and specifications of BRDs has been improved.</td>
</tr>
<tr>
<td>• Through project staff interaction with the Boating and Fisheries Patrol, patrol officers are more informed about TED and BRD design specifications and functions. The Patrol are in a stronger position to police and enforce the devices.</td>
</tr>
<tr>
<td>• The yield and value of three spot crabs Portunus sanguinolentus has improved and the likelihood of overfishing this stock is reduced as a result of the project.</td>
</tr>
<tr>
<td>• Managers have an improved understanding of the distribution and composition of Balmain bug (Ibacus spp.) and mantis shrimp landings in Queensland.</td>
</tr>
<tr>
<td>• Reduced likelihood of overfishing Balmain bugs, as a result of the minimum legal size advice as a direct result of the project.</td>
</tr>
<tr>
<td>• Information obtained on the distribution of the pipehorse (Solegnathus cf. hardwickii), which is listed as vulnerable on the IUCN Red List, can be used to conserve populations of this species.</td>
</tr>
</tbody>
</table>

The project provided quantitative biological and technical information on two issues relating to the Queensland trawl fishery:
1) the assessment of TEDs and BRDs on the catch rates of bycatch, target species and bycatch community structure in the main trawl sectors, and
2) the biology, population dynamics and management of several species that are caught incidentally in the fishery that can now be retained and marketed.
These species are listed in the Trawl Fishery Management Plan [Fisheries (East Coast Trawl) Management Plan 1999] as the permitted species and include barking crayfish (Linuparus trigonus), Balmain bugs (Ibacus spp.), three spot crabs (Portunus sanguinolentus), mantis shrimps, (Stomatopoda), cuttlefish (Sepia spp.), octopus (Octopus spp.), pipehorses (Solegnathus spp.) and Pinkies (Nemipterus spp.).

Evaluating the performance of TEDs and BRDs

The project obtained 1619 measurements and sub-samples of bycatch during a) dedicated research charters that were designed to test TEDs and BRDs, and b) opportunistic sampling on board commercial vessels during their normal fishing activities. A total of 49.1 tonnes of bycatch was weighed at sea, of which 9.8 tonnes was sub-sampled and processed to species level in the laboratory. Over 1300 taxa were recorded in the bycatch, including records of new species occurrences in Queensland, and new information on the extent of species’ distributions.

Information is provided on the a) bycatch species composition in each major sector of the fishery and their catch rates, b) effects of TEDs and BRDs on the catch rates of prawns, scallops, byproduct species (i.e., Moreton Bay bugs and Balmain bugs), total bycatch and individual bycatch species, including the elasmobranchs (sharks and rays), and c) bycatch community assemblages and how they vary with latitude, depth and BRD type.

Research charters

The most promising finding from the project was obtained from one of the research charters which demonstrated that bycatch rates in the saucer scallop fishery could be reduced by a mean of 77% by using nets with both TEDs and square mesh codend BRDs, compared to standard nets. Importantly, this reduction was achieved with no reduction in the catch rate of legal size scallops, and with 63% fewer undersize scallops being caught. For these reasons we recommend that square mesh codend BRDs be made compulsory in the scallop fishery. (TEDs are already compulsory in all trawl sectors, but fishers can use less effective BRDs). If all scallop fishers used these devices, it would equate to a reduction in bycatch of over 10,000 tonnes annually compared to pre-2000 levels (i.e., before TEDs and BRDs were introduced). Use of the square mesh codend BRDs is likely to lower the incidental fishing mortality on undersize scallops, and possibly increase the available exploitable biomass.

The project also demonstrated high potential for square mesh codend BRDs with TEDs in the deepwater eastern king prawn fishery, where the mean bycatch rate was reduced by 29%, with no loss of targeted prawn catch. For this reason, we also recommend the mandatory use of square mesh codend BRDs in this sector.

Another 10-night charter undertaken in the shallow water eastern king prawn fishery demonstrated a significant reduction in mean bycatch rate of 24% by using a radial escape section BRD and TED, compared to a standard net. This combination of devices was particularly effective at reducing catch rates of benthic-pelagic species with fusiform body shape, such as stout whiting Sillago robusta (57% reduction) and yellowtail scad Trachurus novaezelandiae (32% reduction). Unfortunately, the mean catch rate of marketable size eastern king prawns was also reduced by a mean 20%
during the charter, mainly via the TED. The charter showed high potential application for the radial escape section BRD in the shallow water eastern king prawn fishery. We believe the prawn loss could be largely mitigated by adjusting the angle of the TED.

The radial escape section BRD and TED were also evaluated in the north Queensland tiger/endeavour prawn fishery during an eight-night charter. While a significant 20% reduction in mean bycatch rate was demonstrated, it was concluded that the radial escape section BRD was less effective in this sector because a) the bycatch fish species were generally smaller than those of the eastern king prawn fishery and therefore less capable of swimming to, and escaping out of, the device, and b) trawl speed is higher and codends are longer in the tiger/endeavour prawn fishery, thus making it more difficult for small fish species to swim forward and out of the device. The results show that one BRD type is not suitable for all sectors of the fishery, that each sector has its own unique bycatch properties and that effective BRD usage needs to be tailored to each sector.

Opportunistic measures on board commercial vessels

Analysis of the opportunistic sampling obtained on board commercial vessels during their normal fishing activities indicated that, across the major prawn trawl sectors (i.e., north Queensland tiger/endeavour prawn, and shallow- and deepwater eastern king prawns sectors) there was no statistically significant reduction in total mean bycatch rate (i.e., all bycatch including large sharks, large rays and large sponges known collectively as “monsters”) due to TEDs and BRDs, compared to standard nets. When analyses were undertaken excluding large fauna, the mean bycatch rate (i.e., excluding monsters) was significantly reduced by 25%, when both TEDs and BRDs were installed. The reduction in bycatch rate due to the TEDs and BRDs that were used by commercial fishers was low compared to those obtained during the research charters. Reductions in bycatch rates were greater in the tiger/endeavour prawn fishery, while no significant reductions were detected for devices being used in the shallow- and deepwater eastern king prawn sectors. No significant effects on marketable prawn catch rates were detected for the devices being used by industry. In the saucer scallop fishery, the TEDs and BRDs that were being used by fishers resulted in a reduction in total mean bycatch rate (i.e., includes monsters) of 68%. This reduction was due mainly to TEDs excluding large sponges which dominate the bycatch weight in this sector. A significant reduction in scallop catch rate of 11% was detected and mainly attributed to BRDs.

Bycatch reduction could be improved in the Queensland trawl fishery by a) promoting regular meetings of the Technical Working Group which was formed to evaluate BRDs and improve upon their technical specifications, b) further research and testing of BRDs, c) workshops with fishers that demonstrate and promote the more effective devices, d) educational programs for the Boating and Fisheries Patrol to enhance enforcement of the devices, and e) incentives for fishers to reduce their bycatch.

Biology and management of the permitted species

The project provided information on the biology, distribution and management of the permitted species. New information is provided on the species composition of Balmain bug landings in Queensland; the garlic bug *Ibacus chacei* constitutes the majority of Balmain bug landings, followed by the honey bug *Ibacus brucei* and the velvet bug *Ibacus alticrenatus*. The project provided a clearer understanding of the
distribution and fishery for these species, as well as an improved understanding of the
growth rates of I. chacei and the size, age and location at which it reproduces.
Minimum legal sizes for Balmain bugs were developed and recommended to the
fishery managers. The first detailed description of the reproductive biology,
distribution and fishery for the little-known barking crayfish Linuparus trigonus is
provided. We also recommended a minimum legal size of 80 mm CL for barking
crayfish. The reproductive biology and growth of three spot crabs Portunus
sanguinolentus were described and a minimum legal size of 100 mm CW was
recommended and adopted, based on yield-per-recruit analysis. The project provided
new information on the distribution and reproductive biology of mantis shrimps in
Moreton Bay, where the majority of mantis shrimp reported catch is taken. New
information on the catch rates, distribution, sizes and faunal community associations
for the pipehorse, Solegnathus cf hardwickii, which is considered vulnerable and
listed on the International Union for the Conservation of Nature Red List, is also
provided. Information obtained on pinkies (Nemipterus theodorei and N. aurifilum) is
preliminary and includes the first published accounts of the reproductive biology,
distribution and growth for N. theodorei, which is the main species being retained and
marketed. Collectively, the permitted species are valued at $1–2 million annually in
Queensland and while the study has made a significant contribution to understanding
their biology and improving management, further effort and funding are required to
reduce the risk of overfishing these resources.

KEYWORDS: Trawl bycatch, prawns, eastern king prawn, Penaeus plebejus,
tiger prawns, Penaeus esculentus, saucer scallops, Amusium japonicum balloti, TEDs,
BRDs, square mesh codends, radial escape sections, pipehorses, Solegnathus
hardwickii, Balmain bugs, Ibacus chacei, Ibacus brucei, Ibacus alticrenatus, Moreton
Bay bugs, Thenus orientalis, stout whiting, Sillago robusta, three spot crabs, Portunus
sanguinolentus, barking crayfish, Linuparus trigonus, Mantis shrimps, Oratosquilla
interrupta, Oratosquilla stephensi, Erugosquilla woodmasoni, Harpiosquilla
harpax, Nemipterus theodorei, Nemipterus aurifilum, elasmobranchs, rhinobatids,
Aptychotrema rostrata, urolophids, Trygonoptera testacea, Urolophus sp., Rajids,
Dipturus polyommata, Scyliorhinids, Asymbolus rubiginosus, Galeus boardmani,
generalised linear models, GLM.

3 Background

Prawn trawling generates a higher proportion of discards than any other type of
fishing (Alverson et al., 1994). The Queensland East Coast Trawl Fishery (QECTF) is
the largest trawl fleet in Australia, and in 2004 consisted of about 500 licensed otter
trawlers that were allocated approximately 80,000 boat-nights (predominantly a night-
time fishery) of effort annually. In the late 1990s it was estimated that annual
production of bycatch by the fishery was likely to exceed 25,000 t (Robins and
Courtney, 1998).

The Queensland Government has recognised the need to reduce trawl bycatch and to
this end, has undertaken research to address the problem, with FRDC support.
Research initiatives include FRDC 93/231.07 (Development of the AusTED), FRDC
96/254 (Commercialisation and Extension of Bycatch Reduction Devices) and FRDC
96/257 (Ecological sustainability of bycatch and biodiversity in prawn trawl
fisheries).
The Queensland *Fisheries (East Coast Trawl) Fishery Management Plan 1999* sought to reduce bycatch through the mandatory use of turtle exclusion devices (TEDs) and bycatch reduction devices (BRDs) throughout the entire fishery. (Note: when the project proposal was finalised Moreton Bay trawl fishers were still exempt from using BRDs). Initially, some fishers argued that there were problems with the design, function and safety of TEDs and BRDs in the scallop and deepwater (> 50 fm) sectors and as a consequence, implementation of the devices in these sectors was delayed, but by 2002 both TEDs and BRDs were mandatory in all otter trawl nets throughout the state.

The research undertaken in this project has quantified the effects of TEDs and BRDs in the major prawn trawl sectors. It has also demonstrated the potential bycatch reduction that could be achieved if fishers were to use highly effective BRDs, such as square mesh codends, in certain sectors.

The trawl Management Plan put forward a Review Event to assess and evaluate the process of bycatch reduction. The Review Event was a 40% reduction in bycatch by 1 January 2005. However, it is important to note that demonstrating such a reduction is extremely difficult and dependent upon the ability to measure bycatch production before, and again after, the management changes were introduced. It is both difficult and impractical for fishers to weigh and record their bycatch during normal commercial fishing and as a result, there is no known way to directly measure the total tonnage of bycatch produced in the fishery. Much of the research presented here focused on quantifying the effects of TEDs and BRDs on catch rates, rather than total production.

The trawl fishery Management Plan also increased the number of species that commercial trawler operators were legally allowed to retain and market. In the past the “principal fish” species that operators were permitted to retain was restricted to prawns, scallops, bugs, squid and blue swimmer crabs. However, an additional list of “permitted fish” species has increased the number of species that fishers can retain. This list includes Balmain bugs (*Ibacus* spp.), barking crayfish (*Linuparus trigonus*), cuttlefish (*Sepia* spp.), goatfish (*Upeneus* spp.), mantis shrimp (*Squilla* spp., *Oratosquilla* spp.), octopus (*Octopus* spp.), pinkies (*Nemipterus* spp.) pipefish (*Solegnathus* spp., *Haliichthys* spp., *Halicampus* spp.), three spot crabs (*Portunus sanguinolentus*), sharks (*Carcharhinus* spp.) and whiptails (*Pentapodus paradiseus*). As these species are now permitted catch and the Queensland Government is obliged to manage the stocks, the project also focused on quantifying the population dynamics of many of these species and providing advice on optimising and sustaining their value.

4 Need

There was a strong need to examine how bycatch rates in the Queensland East Coast Trawl Fishery were affected by the mandatory introduction of TEDs and BRDs. This need was driven by a) changes in the *Wildlife Protection Act 1984* and Environment Australia’s Criteria for Assessing Sustainability of Commercial Fisheries, b) national and global political pressure, and c) a general increase in the awareness of prawn trawl bycatch by the Australian public.
Although extremely difficult to quantify, there was also a need to consider the 40% bycatch reduction Review Event outlined in the fishery’s Management Plan. Directly measuring the total amount of bycatch produced by prawn trawl fisheries is not possible, and the statistical robustness of estimates is generally considered to be weak (Andrew and Pepperell, 1992). There is therefore a need to improve methods for measuring bycatch if reductions are to be demonstrated.

References