

Client Sample ID: SVW7 Lab ID#: 1208098A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN					
File Name:	p080807	Date	of Collection: 7/30/1	2 1:30:00 PM	
Dil. Factor:	1.87	Date of Analysis: 8/8/12 11:36 AM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	0.94	Not Detected	4.6	Not Detected	
Freon 114	0.94	Not Detected	6.5	Not Detected	
Chloromethane	9.4	Not Detected	19	Not Detected	
Vinyl Chloride	0.94	Not Detected	2.4	Not Detected	
1,3-Butadiene	0.94	Not Detected	2.1	Not Detected	
Bromomethane	9.4	Not Detected	36	Not Detected	
Chloroethane	3.7	Not Detected	9.9	Not Detected	
Freon 11	0.94	Not Detected	5.2	Not Detected	
Ethanol	3.7	Not Detected	7.0	Not Detected	
Freon 113	0.94	Not Detected	7.2	Not Detected	
1,1-Dichloroethene	0.94	Not Detected	3.7	Not Detected	
Acetone	9.4	Not Detected	22	Not Detected	
2-Propanol	3.7	Not Detected	9.2	Not Detected	
Carbon Disulfide	3.7	Not Detected	12	Not Detected	
3-Chloropropene	3.7	Not Detected	12	Not Detected	
Methylene Chloride	9.4	Not Detected	32	Not Detected	
Methyl tert-butyl ether	0.94	Not Detected	3.4	Not Detected	
trans-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected	
Hexane	0.94	Not Detected	3.3	Not Detected	
1,1-Dichloroethane	0.94	Not Detected	3.8	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	3.7	Not Detected	11	Not Detected	
cis-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected	
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected	
Chloroform	0.94	1.4	4.6	6.8	
1,1,1-Trichloroethane	0.94	Not Detected	5.1	Not Detected	
Cyclohexane	0.94	Not Detected	3.2	Not Detected	
Carbon Tetrachloride	0.94	Not Detected	5.9	Not Detected	
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected	
Benzene	0.94	Not Detected	3.0	Not Detected	
1,2-Dichloroethane	0.94	Not Detected	3.8	Not Detected	
Heptane	0.94	Not Detected	3.8	Not Detected	
Trichloroethene	0.94	2.6	5.0	14	
1,2-Dichloropropane	0.94	Not Detected	4.3	Not Detected	
1,4-Dioxane	3.7	Not Detected	13	Not Detected	
Bromodichloromethane	0.94	Not Detected	6.3	Not Detected	
cis-1,3-Dichloropropene	0.94	Not Detected	4.2	Not Detected	
4-Methyl-2-pentanone	0.94	Not Detected	3.8	Not Detected	
Toluene	0.94	1.0	3.5	3.8	
trans-1,3-Dichloropropene	0.94	Not Detected	4.2	Not Detected	
1,1,2-Trichloroethane	0.94	Not Detected	5.1	Not Detected	
Tetrachloroethene	0.94	79	6.3	530	
2-Hexanone	3.7	Not Detected	15	Not Detected	

Client Sample ID: SVW7 Lab ID#: 1208098A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p080807 1.87	Date of Collection: 7/30/12 1:30:00 PM Date of Analysis: 8/8/12 11:36 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.94	Not Detected	8.0	Not Detected
1,2-Dibromoethane (EDB)	0.94	Not Detected	7.2	Not Detected
Chlorobenzene	0.94	Not Detected	4.3	Not Detected
Ethyl Benzene	0.94	Not Detected	4.0	Not Detected
m,p-Xylene	0.94	1.8	4.1	8.0
o-Xylene	0.94	1.1	4.1	4.6
Styrene	0.94	Not Detected	4.0	Not Detected
Bromoform	0.94	Not Detected	9.7	Not Detected
Cumene	0.94	Not Detected	4.6	Not Detected
1,1,2,2-Tetrachloroethane	0.94	Not Detected	6.4	Not Detected
Propylbenzene	0.94	Not Detected	4.6	Not Detected
4-Ethyltoluene	0.94	Not Detected	4.6	Not Detected
1,3,5-Trimethylbenzene	0.94	Not Detected	4.6	Not Detected
1,2,4-Trimethylbenzene	0.94	Not Detected	4.6	Not Detected
1,3-Dichlorobenzene	0.94	Not Detected	5.6	Not Detected
1,4-Dichlorobenzene	0.94	Not Detected	5.6	Not Detected
alpha-Chlorotoluene	0.94	Not Detected	4.8	Not Detected
1,2-Dichlorobenzene	0.94	Not Detected	5.6	Not Detected
1,2,4-Trichlorobenzene	3.7	Not Detected	28	Not Detected
Hexachlorobutadiene	3.7	Not Detected	40	Not Detected

		Metnoa
Surrogates	%Recovery	Limits
Toluene-d8	93	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: FB001 Lab ID#: 1208098A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p080808 1.61		Date of Collection: 7/30/12 12:40:00 PM Date of Analysis: 8/8/12 12:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.80	Not Detected	4.0	Not Detected	
Freon 114	0.80	Not Detected	5.6	Not Detected	
Chloromethane	8.0	Not Detected	17	Not Detected	
√inyl Chloride	0.80	Not Detected	2.0	Not Detected	
1,3-Butadiene	0.80	Not Detected	1.8	Not Detected	
Bromomethane	8.0	Not Detected	31	Not Detected	
Chloroethane	3.2	Not Detected	8.5	Not Detected	
Freon 11	0.80	Not Detected	4.5	Not Detected	
Ethanol	3.2	Not Detected	6.1	Not Detected	
Freon 113	0.80	Not Detected	6.2	Not Detected	
1,1-Dichloroethene	0.80	Not Detected	3.2	Not Detected	
Acetone	8.0	Not Detected	19	Not Detected	
2-Propanol	3.2	Not Detected	7.9	Not Detected	
Carbon Disulfide	3.2	Not Detected	10	Not Detecte	
3-Chloropropene	3.2	Not Detected	10	Not Detecte	
Methylene Chloride	8.0	Not Detected	28	Not Detected	
Methyl tert-butyl ether	0.80	Not Detected	2.9	Not Detected	
rans-1.2-Dichloroethene	0.80	Not Detected	3.2	Not Detecte	
Hexane	0.80	Not Detected	2.8	Not Detecte	
1,1-Dichloroethane	0.80	Not Detected	3.2	Not Detecte	
2-Butanone (Methyl Ethyl Ketone)	3.2	Not Detected	9.5	Not Detected	
cis-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected	
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected	
Chloroform	0.80	Not Detected	3.9	Not Detected	
1,1,1-Trichloroethane	0.80	Not Detected	4.4	Not Detected	
Cyclohexane	0.80	Not Detected	2.8	Not Detected	
Carbon Tetrachloride	0.80	Not Detected	5.1	Not Detected	
2,2,4-Trimethylpentane	0.80	Not Detected	3.8	Not Detected	
Benzene	0.80	Not Detected	2.6	Not Detected	
1,2-Dichloroethane	0.80	Not Detected	3.2	Not Detected	
Heptane	0.80	Not Detected	3.3	Not Detected	
Trichloroethene	0.80	Not Detected	4.3	Not Detected	
1,2-Dichloropropane	0.80	Not Detected	3.7	Not Detected	
1,4-Dioxane	3.2	Not Detected	12	Not Detected	
Bromodichloromethane	0.80	Not Detected	5.4	Not Detected	
cis-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected	
4-Methyl-2-pentanone	0.80	Not Detected	3.3	Not Detected	
Toluene	0.80	Not Detected	3.0	Not Detected	
roldene rans-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected	
1,1,2-Trichloroethane	0.80	Not Detected	4.4	Not Detected	
Tetrachloroethene	0.80	Not Detected	5.5	Not Detected	
2-Hexanone	3.2	Not Detected	13	Not Detected	

Client Sample ID: FB001 Lab ID#: 1208098A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080808	Date of Collection: 7/30/12 12:40:00		
Dil. Factor:	1.61	Date of Analysis: 8/8/12 12:15 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected
1,2-Dibromoethane (EDB)	0.80	Not Detected	6.2	Not Detected
Chlorobenzene	0.80	Not Detected	3.7	Not Detected
Ethyl Benzene	0.80	Not Detected	3.5	Not Detected
m,p-Xylene	0.80	Not Detected	3.5	Not Detected
o-Xylene	0.80	Not Detected	3.5	Not Detected
Styrene	0.80	Not Detected	3.4	Not Detected
Bromoform	0.80	Not Detected	8.3	Not Detected
Cumene	0.80	Not Detected	4.0	Not Detected
1,1,2,2-Tetrachloroethane	0.80	Not Detected	5.5	Not Detected
Propylbenzene	0.80	Not Detected	4.0	Not Detected
4-Ethyltoluene	0.80	Not Detected	4.0	Not Detected
1,3,5-Trimethylbenzene	0.80	Not Detected	4.0	Not Detected
1,2,4-Trimethylbenzene	0.80	Not Detected	4.0	Not Detected
1,3-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,4-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
alpha-Chlorotoluene	0.80	Not Detected	4.2	Not Detected
1,2-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,2,4-Trichlorobenzene	3.2	Not Detected	24	Not Detected
Hexachlorobutadiene	3.2	Not Detected	34	Not Detected

		Metnoa
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: REP001 Lab ID#: 1208098A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Factor:	12.2	Date o	of Analysis: 8/8/1	Date of Collection: 7/30/12 11:30:00 AM Date of Analysis: 8/8/12 07:30 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Freon 12	6.1	Not Detected	30	Not Detected		
Freon 114	6.1	Not Detected	43	Not Detected		
Chloromethane	61	Not Detected	120	Not Detected		
/inyl Chloride	6.1	Not Detected	16	Not Detected		
1,3-Butadiene	6.1	Not Detected	13	Not Detected		
Bromomethane	61	Not Detected	240	Not Detected		
Chloroethane	24	Not Detected	64	Not Detected		
Freon 11	6.1	Not Detected	34	Not Detected		
Ethanol	24	Not Detected	46	Not Detected		
Freon 113	6.1	Not Detected	47	Not Detected		
1,1-Dichloroethene	6.1	Not Detected	24	Not Detected		
Acetone	61	Not Detected	140	Not Detected		
2-Propanol	24	Not Detected	60	Not Detecte		
Carbon Disulfide	24	Not Detected	76	Not Detecte		
3-Chloropropene	24	Not Detected	76	Not Detecte		
Methylene Chloride	61	Not Detected	210	Not Detecte		
Methyl tert-butyl ether	6.1	Not Detected	22	Not Detected		
rans-1,2-Dichloroethene	6.1	Not Detected	24	Not Detecte		
Hexane	6.1	Not Detected	21	Not Detecte		
1,1-Dichloroethane	6.1	Not Detected	25	Not Detecte		
2-Butanone (Methyl Ethyl Ketone)	24	Not Detected	72	Not Detected		
cis-1,2-Dichloroethene	6.1	34	24	130		
Tetrahydrofuran	6.1	Not Detected	18	Not Detected		
Chloroform	6.1	Not Detected	30	Not Detected		
1,1,1-Trichloroethane	6.1	Not Detected	33	Not Detected		
Cyclohexane	6.1	Not Detected	21	Not Detected		
Carbon Tetrachloride	6.1	Not Detected	38	Not Detected		
2,2,4-Trimethylpentane	6.1	Not Detected	28	Not Detected		
Benzene	6.1	Not Detected	19	Not Detected		
1,2-Dichloroethane	6.1	Not Detected	25	Not Detected		
Heptane	6.1	Not Detected	25	Not Detected		
Frichloroethene	6.1	280	33	1500		
1,2-Dichloropropane	6.1	Not Detected	28	Not Detecte		
1,4-Dioxane	24	Not Detected	88	Not Detected		
Bromodichloromethane	6.1	Not Detected	41	Not Detected		
cis-1,3-Dichloropropene	6.1	Not Detected	28	Not Detected		
4-Methyl-2-pentanone	6.1	Not Detected	25	Not Detected		
Foluene	6.1	Not Detected	23	Not Detected		
rans-1,3-Dichloropropene	6.1	Not Detected	28	Not Detected		
1,1,2-Trichloroethane	6.1	Not Detected	33	Not Detected		
Tetrachloroethene	6.1	1600	41	11000		
2-Hexanone	24	Not Detected	100	Not Detected		

Client Sample ID: REP001 Lab ID#: 1208098A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p080820 12.2	Date of Collection: 7/30/12 11:30: Date of Analysis: 8/8/12 07:30 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	6.1	Not Detected	52	Not Detected	
1,2-Dibromoethane (EDB)	6.1	Not Detected	47	Not Detected	
Chlorobenzene	6.1	Not Detected	28	Not Detected	
Ethyl Benzene	6.1	Not Detected	26	Not Detected	
m,p-Xylene	6.1	Not Detected	26	Not Detected	
o-Xylene	6.1	Not Detected	26	Not Detected	
Styrene	6.1	Not Detected	26	Not Detected	
Bromoform	6.1	Not Detected	63	Not Detected	
Cumene	6.1	Not Detected	30	Not Detected	
1,1,2,2-Tetrachloroethane	6.1	Not Detected	42	Not Detected	
Propylbenzene	6.1	Not Detected	30	Not Detected	
4-Ethyltoluene	6.1	Not Detected	30	Not Detected	
1,3,5-Trimethylbenzene	6.1	Not Detected	30	Not Detected	
1,2,4-Trimethylbenzene	6.1	Not Detected	30	Not Detected	
1,3-Dichlorobenzene	6.1	Not Detected	37	Not Detected	
1,4-Dichlorobenzene	6.1	Not Detected	37	Not Detected	
alpha-Chlorotoluene	6.1	Not Detected	32	Not Detected	
1,2-Dichlorobenzene	6.1	Not Detected	37	Not Detected	
1,2,4-Trichlorobenzene	24	Not Detected	180	Not Detected	
Hexachlorobutadiene	24	Not Detected	260	Not Detected	

Container Type: 1 Ener Camina Cameter		Method
Surrogates	%Recovery	Limits
Toluene-d8	93	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: Lab Blank Lab ID#: 1208098A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p080806 1.00		Date of Collection: NA Date of Analysis: 8/8/12 10:51 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.50	Not Detected	2.5	Not Detected	
Freon 114	0.50	Not Detected	3.5	Not Detected	
Chloromethane	5.0	Not Detected	10	Not Detected	
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected	
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected	
Bromomethane	5.0	Not Detected	19	Not Detected	
Chloroethane	2.0	Not Detected	5.3	Not Detected	
Freon 11	0.50	Not Detected	2.8	Not Detected	
Ethanol	2.0	Not Detected	3.8	Not Detected	
Freon 113	0.50	Not Detected	3.8	Not Detected	
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
Acetone	5.0	Not Detected	12	Not Detected	
2-Propanol	2.0	Not Detected	4.9	Not Detected	
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected	
3-Chloropropene	2.0	Not Detected	6.3	Not Detected	
Methylene Chloride	5.0	Not Detected	17	Not Detected	
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected	
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
Hexane	0.50	Not Detected	1.8	Not Detected	
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected	
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected	
Chloroform	0.50	Not Detected	2.4	Not Detected	
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected	
Cyclohexane	0.50	Not Detected	1.7	Not Detected	
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected	
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected	
Benzene	0.50	Not Detected	1.6	Not Detected	
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected	
Heptane	0.50	Not Detected	2.0	Not Detected	
Trichloroethene	0.50	Not Detected	2.7	Not Detected	
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected	
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected	
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected	
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected	
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected	
Toluene	0.50	Not Detected	1.9	Not Detected	
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected	
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected	
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected	
2-Hexanone	2.0	Not Detected	8.2	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1208098A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p080806 1.00	Date of Collection: NA Date of Analysis: 8/8/12 10:51 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Containor Type: Tex Trot Applicable		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: CCV Lab ID#: 1208098A-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 08:58 AM

Compound	%Recovery
Freon 12	93
Freon 114	94
Chloromethane	86
Vinyl Chloride	81
1,3-Butadiene	80
Bromomethane	86
Chloroethane	83
Freon 11	94
Ethanol	71
Freon 113	97
1,1-Dichloroethene	88
Acetone	86
2-Propanol	79
Carbon Disulfide	84
3-Chloropropene	89
Methylene Chloride	81
Methyl tert-butyl ether	126
trans-1,2-Dichloroethene	99
Hexane	88
1,1-Dichloroethane	85
2-Butanone (Methyl Ethyl Ketone)	90
cis-1,2-Dichloroethene	89
Tetrahydrofuran	80
Chloroform	90
1,1,1-Trichloroethane	92
Cyclohexane	91
Carbon Tetrachloride	94
2,2,4-Trimethylpentane	86
Benzene	88
1,2-Dichloroethane	92
Heptane	100
Trichloroethene	91
1,2-Dichloropropane	80
1,4-Dioxane	95
Bromodichloromethane	91
cis-1,3-Dichloropropene	91
4-Methyl-2-pentanone	93
Toluene	92
trans-1,3-Dichloropropene	97
1,1,2-Trichloroethane	90
Tetrachloroethene	100
2-Hexanone	95

Client Sample ID: CCV Lab ID#: 1208098A-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 08:58 AM

Compound		%Recovery
Dibromochloromethane	(V).	104
1,2-Dibromoethane (EDB)		96
Chlorobenzene	CO.	91
Ethyl Benzene	100	102
m,p-Xylene		106
o-Xylene	. 6	104
Styrene		103
Bromoform		103
Cumene		109
1,1,2,2-Tetrachloroethane		81
Propylbenzene	.(1)	99
4-Ethyltoluene		105
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		107
1,3-Dichlorobenzene		93
1,4-Dichlorobenzene	70.	96
alpha-Chlorotoluene		90
1,2-Dichlorobenzene		93
1,2,4-Trichlorobenzene		88
Hexachlorobutadiene		102

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	116	70-130

Client Sample ID: LCS Lab ID#: 1208098A-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 09:33 AM

Compound	%Recovery
Freon 12	95
Freon 114	97
Chloromethane	84
Vinyl Chloride	90
1,3-Butadiene	84
Bromomethane	95
Chloroethane	85
Freon 11	94
Ethanol	50 Q
Freon 113	101
1,1-Dichloroethene	96
Acetone	90
2-Propanol	79
Carbon Disulfide	107
3-Chloropropene	104
Methylene Chloride	83
Methyl tert-butyl ether	136 Q
trans-1,2-Dichloroethene	111
Hexane	90
1,1-Dichloroethane	89
2-Butanone (Methyl Ethyl Ketone)	91
cis-1,2-Dichloroethene	94
Tetrahydrofuran	79
Chloroform	93
1,1,1-Trichloroethane	95
Cyclohexane	98
Carbon Tetrachloride	94
2,2,4-Trimethylpentane	89
Benzene	88
1,2-Dichloroethane	89
Heptane	96
Trichloroethene	90
1,2-Dichloropropane	82
1,4-Dioxane	88
Bromodichloromethane	90
cis-1,3-Dichloropropene	91
4-Methyl-2-pentanone	90
Toluene	88
trans-1,3-Dichloropropene	99
1,1,2-Trichloroethane	95
Tetrachloroethene	100
2-Hexanone	86

Client Sample ID: LCS Lab ID#: 1208098A-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 09:33 AM

Compound		%Recovery
Dibromochloromethane	9.5	103
1,2-Dibromoethane (EDB)		99
Chlorobenzene		92
Ethyl Benzene		102
m,p-Xylene		107
o-Xylene	. 60	104
Styrene		102
Bromoform		102
Cumene		109
1,1,2,2-Tetrachloroethane		82
Propylbenzene		99
4-Ethyltoluene		98
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		102
1,3-Dichlorobenzene		93
1,4-Dichlorobenzene	00.1	94
alpha-Chlorotoluene		86
1,2-Dichlorobenzene		93
1,2,4-Trichlorobenzene		87
Hexachlorobutadiene		101

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	113	70-130

Client Sample ID: LCSD Lab ID#: 1208098A-12AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 09:52 AM

Compound	%Recovery
Freon 12	92
Freon 114	97
Chloromethane	85
Vinyl Chloride	87
1,3-Butadiene	81
Bromomethane	92
Chloroethane	85
Freon 11	89
Ethanol	48 Q
Freon 113	99
1,1-Dichloroethene	95
Acetone	87
2-Propanol	78
Carbon Disulfide	106
3-Chloropropene	101
Methylene Chloride	82
Methyl tert-butyl ether	130
trans-1,2-Dichloroethene	109
Hexane	88
1,1-Dichloroethane	87
2-Butanone (Methyl Ethyl Ketone)	93
cis-1,2-Dichloroethene	94
Tetrahydrofuran	77
Chloroform	91
1,1,1-Trichloroethane	93
Cyclohexane	94
Carbon Tetrachloride	92
2,2,4-Trimethylpentane	90
Benzene	86
1,2-Dichloroethane	87
Heptane	95
Trichloroethene	87
1,2-Dichloropropane	80
1,4-Dioxane	88
Bromodichloromethane	87
cis-1,3-Dichloropropene	88
4-Methyl-2-pentanone	86
Toluene	88
trans-1,3-Dichloropropene	95
1,1,2-Trichloroethane	92
Tetrachloroethene	98
2-Hexanone	85

Client Sample ID: LCSD Lab ID#: 1208098A-12AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p080804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/8/12 09:52 AM

Compound		%Recovery
Dibromochloromethane	9.5	100
1,2-Dibromoethane (EDB)		97
Chlorobenzene		91
Ethyl Benzene		100
m,p-Xylene		107
o-Xylene	. 60	104
Styrene		99
Bromoform		98
Cumene		108
1,1,2,2-Tetrachloroethane		82
Propylbenzene		98
4-Ethyltoluene	,(0 ()0	98
1,3,5-Trimethylbenzene		105
1,2,4-Trimethylbenzene		104
1,3-Dichlorobenzene		93
1,4-Dichlorobenzene	76. 7	95
alpha-Chlorotoluene		83
1,2-Dichlorobenzene		93
1,2,4-Trichlorobenzene		92
Hexachlorobutadiene		100

Q = Exceeds Quality Control limits.

		Metnoa
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	112	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

	•	Ψ,	₩	*60-	40	-	•	_	•	-		_	4.	_	,	,	-	_	_	Ī	_	_	
										_								_	,				
n										۲	a	വ	e					O	ĭ				

sch4p4(6) Personal inform				ct Info:	·	Turn A	Around	Lab Use	Only		
Project Manager Collected by: (Print and Sign) sch4p4(6) Personal informat sch4p4(6)	(6) Personal i				Time:		Pressurized by:				
Company Golder Associates Email sch4p4(6)	Person and dem		-	CQ 31		No	rmal	Date:			
Address 216 Draper St City Cairns State		Projec	# 0876	73045	☐ Ru	sh	Pressurization Gas: N ₂ He				
Sch4p4(6) Personal information Phone Fax	<u> </u>	,,,,,	Projec	Name Kwil	rleen Dry Cleaners	specify					
riore		Г	ate	Time			opiopyopiosiikiinisaanaakkyje	ter Pres	sure/Vac	uum	
Lab I.D. Field Sample I.D. (Location)	Can #			of Collection	Analyses Reques	sted	Initial	Final	Receipt	Final	
DIAB SVWI	34581	30/0	7/12	10:00 am	TO15 + Hel.	ium	-30	-9			
CLAB SUWZ	34/00	30/0	7/12	10:30 am	h ((-29	-8			
USAD SVW3	11821		7/12	12:00 pm	70 /1		-30	-17			
DYARD SVW4	33 645		7/12	11:00 am	// //		-26	-9			
COND SVW5	12383	30/0	7/12	2:30 pm	11 11		-30	-10			
OURD SVW6	9354	-	07/12	12:45pm	11 11		-30	-7			
DIAID SVW 7	37 295		7/12	1:30 pm	ž t		-30	-10	11111	5.57	
V8AD FB 001	9513	30/	07/12	12:40 pm	& TO 15		-29	-5			
OGARD REPOOL	34156	30/	>7/12	11:30 am	TOIS + Hel.	um	-30	- 9			
	sch4r										
sch4p4(6) Personal ir sch4p4(6) Per 31/07//2 17:00 sch4	ived byla(signa o4(6) Personal ived by: (signa	inform	17/17	- 8/6/	q:00 Notes:	an a	n de de la deservación de la companya de la company	koz z gomenowaniekości k kozar s klasow.			
Relinquished by: (signature) Date/Time Rece	ived by: (signa	ture)	Date/Tin	ne							
Lab Shipper Name Air Bill #		emp (°C)	Condition	Custody Se	eals Inta	act?	Work	Order #		
Use	Total i energiaritat int i incesi li	JA	co. 15272 per Sabrial a stal	Moon	Yes N	o (No	ne	IZV	BUB	8	
Only											

Form 1293 rev.11

22-095

8/13/2012

Mr. sch4p4(6) Person

Golder Associates, Australia

216 Draper Street

Cairns, Queensland 4870

Project Name: Kwikleen Dry Cleaners

Project #: 087673045 Workorder #: 1208098B

Dear Mr. sch4p4(6) Person

The following report includes the data for the above referenced project for sample(s) received on 8/6/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal at s

Regards,

sch4p4(6) Personal information

sch4p4(6) Personal in

Project Manager

A Eurofins Lancaster Laboratories Company

WORK ORDER #: 1208098B

Work Order Summary

CLIENT: sch4p4(6) Personal inf
BILL TO: Accounts Payable

Golder Associates, Australia Golder Associates, Australia

216 Draper Street PO BOX 6079

Cairns, Queensland 4870 Hawthorne, Australia 3121

PHONE: +61 7 4054 8200 P.O. # CQ3105

FAX: +61 7 4054 8201 PROJECT # 087673045 Kwikleen Dry Cleaners

DATE RECEIVED: 08/06/2012 **CONTACT:** sch4p4(6) Personal **DATE COMPLETED:** 08/13/2012

ED A CENONAL	N. 1360	103	RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<u>PRESSURE</u>
01A	SVW1	Modified ASTM D-1946	8.0 "Hg	5.0 psi
02A	SVW2	Modified ASTM D-1946	8.0 "Hg	5.0 psi
03A	SVW3	Modified ASTM D-1946	9.5 "Hg	5.0 psi
04A	SVW4	Modified ASTM D-1946	8.0 "Hg	5.0 psi
05A	SVW5	Modified ASTM D-1946	9.0 "Hg	5.0 psi
06A	SVW6	Modified ASTM D-1946	7.0 "Hg	5.0 psi
07A	SVW7	Modified ASTM D-1946	8.5 "Hg	5.0 psi
09A	REP001	Modified ASTM D-1946	8.0 "Hg	5.0 psi
10A	Lab Blank	Modified ASTM D-1946	NA	NA
11A	LCS	Modified ASTM D-1946	NA	NA
11AA	LCSD	Modified ASTM D-1946	NA	NA
	olished	one		

Sch4p4(6) Personal information

CERTIFIED BY:

DATE: 08/13/12

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 2 of 16

22-095 File B Page 17 of 406

LABORATORY NARRATIVE Modified ASTM D-1946 Golder Associates, Australia Workorder# 1208098B

Eight 1 Liter Summa Canister samples were received on August 06, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Helium in air using GC/TCD. The method involves direct injection of 1.0 mL of sample.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There was a significant difference (greater than 5.0" Hg) between the measured canister receipt vacuum and that which was reported on the Chain of Custody (COC) for sample SVW3. A leak test indicated that the valve was functioning properly.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

Jin Resoluces Dies Palincis Per Proposition Per Proposition Palincis Per Proposition Per Propo File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Resolute 2009

Client Sample ID: SVW1

Lab ID#: 1208098B-01A

No Detections Were Found.

Client Sample ID: SVW2
Lab ID#: 1208098B-02A
No Detections Were Found.

Client Sample ID: SVW3
Lab ID#: 1208098B-03A
No Detections Were Found.

Client Sample ID: SVW4
Lab ID#: 1208098B-04A
No Detections Were Found.

Client Sample ID: SVW5
Lab ID#: 1208098B-05A
No Detections Were Found.

Client Sample ID: SVW6 Lab ID#: 1208098B-06A No Detections Were Found.

Client Sample ID: SVW7
Lab ID#: 1208098B-07A
No Detections Were Found.

Client Sample ID: REP001 Lab ID#: 1208098B-09A No Detections Were Found.

Client Sample ID: SVW1 Lab ID#: 1208098B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081305 1.83		f Collection: 7/30 f Analysis: 8/13/1	
Compound		Rpt. Limit (%)		Amount (%)
Helium		0.092	360	Not Detected
Container Type: 1 Liter 9	Summa Canister		SUII	
		Oisch		
		Res Diso.		
	SOL			
	200			
	leg ou by			
	(S)			
10/13				
So.				

Client Sample ID: SVW2 Lab ID#: 1208098B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081306 1.83		ollection: 7/30/12 10:30:00 AM alysis: 8/13/12 09:22 AM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.092	Not Detected
Container Type: 1 Liter Su	mma Canister	(6)	
		ois Cle	
		Act 2009	
		(000)	
	501	, C	
	6-X1		
oublishe	100 B		
,,,0	30		
isli			
Orjo,			
X			

Client Sample ID: SVW3 Lab ID#: 1208098B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Rpt. Limit Amount (%) (%)	File Name: Dil. Factor:	9081307 1.96		Collection: 7/30/ Analysis: 8/13/12	
Pelium 0.098 Not Detected container Type: 1 Liter Summa Canister	Compound		Rpt. Limit		Amount
aesolikces Dischos	Helium			30	Not Detected
Published on Reflices Disc.	Container Type: 1 Liter S	Summa Canister	20	5111	
Published on Refliket 2009			Oisci		
Published on Refull Act 20°			(85,09		
Published on Refl Act			10 10 m		
Published on Pall		200	PC.		
Published		00, 51			
Publish		ed			
Brigo.	lish				
	Orlo,				

Client Sample ID: SVW4 Lab ID#: 1208098B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081308 1.83		f Collection: 7/30 f Analysis: 8/13/1	
Compound		Rpt. Limit		Amount (%)
Helium		(%) 0.092	.(O)	Not Detected
Container Type: 1 Liter \$	Summa Canister	3/0	SUII	
		Res Disc.		
		(0000)		
	2501	C		
	ROLL			
	egoulst			
::6	0			
Q				

Client Sample ID: SVW5 Lab ID#: 1208098B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081309 2.56		F Collection: 7/30 F Analysis: 8/13/1	
Compound		Rpt. Limit (%)	C	Amount (%)
Helium		0.13	·(?)	Not Detected
Container Type: 1 Liter S			SUII	
		Res Disor		
	20501	PC, C		
	ed on Pall			
Publis,				

Client Sample ID: SVW6 Lab ID#: 1208098B-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081310 1.75		Collection: 7/30/ Analysis: 8/13/12	
		Rpt. Limit	10	Amount
Compound		(%)		(%)
Helium		0.088	.(6)	Not Detected
Container Type: 1 Liter S	umma Canister			
		10		
		rces Disc.		
		GYO		
		6, 69		
		(C) (V)		
		7 7		
	600			
	0,5	70		
	2	Y		
	91, 5			
	70			
iolish.	20			
(1.6)				
V ~				

Client Sample ID: SVW7 Lab ID#: 1208098B-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081311 2.50		f Collection: 7/30 f Analysis: 8/13/1	
Compound		Rpt. Limit (%)	, ,	Amount (%)
Helium		0.12	(0)	Not Detected
Container Type: 1 Liter S	Summa Canister		SUII	
		Oisc.		
		Ret 2009		
	200	20		
	edonPell	,		
\(\chi\)	(SO			
Misi	Ť			
BAIL				

Client Sample ID: REP001 Lab ID#: 1208098B-09A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081313 1.83		Collection: 7/30/ Analysis: 8/13/1	
Compound		Rpt. Limit (%)		Amount (%)
Helium		0.092	30	Not Detected
Container Type: 1 Liter :		20	SUI	
		Act 2009		
		ces do		
	200	RO		
	leg ou st	•		
\(\chi_{\chi}\)	EQ			
idis				
Orio.				

Client Sample ID: Lab Blank Lab ID#: 1208098B-10A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9081304 1.00		f Collection: NA f Analysis: 8/13/12 08:50 AM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.050	Not Detected
Container Type: NA - Not A			5111
		Res Disch	
	2501	CCI. 200	
	on Pall	Y	
iolishe.			
Pulplis			

Client Sample ID: LCS Lab ID#: 1208098B-11A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9081303 **Date of Collection: NA** Dil. Factor: Date of Analysis: 8/13/12 08:41 AM 1.00

Published on Resources Dischosure Compound %Recovery Helium 100

Client Sample ID: LCSD Lab ID#: 1208098B-11AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9081323 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 8/13/12 01:31 PM

Published on Refunction Published on Resources Discharge Dischar Compound %Recovery Helium 100

Published on Resources Dischesure Los **APPENDIX E**

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

ources Dischosure Loc

Golder 22-09Associates

Published on

File B Page 34 of 406

ATTACHMENT F

Delineation Investigation September 2012 - March 2013, Cairns Villa Caravan Park, Golder Associates Pty Ltd, Ref. No. 087673045-040-R-Rev0, dated 10 April 2013.

22-095 File B

DELINEATION INVESTIGATION SEPTEMBER 2012 - MARCH 2013

Cairns Villa Caravan Park

Resolute 2009 Submitted to: Mr sch4p4(6) Person 32-36 Pease Street Manunda QLD 4883

Report Number. Distribution:

1 Electronic Copy 1 Electronic Copy

Mr sch4p4(6) Persona Third Party Reviewer

087673045-040-R-Rev0

Table of Contents

1.0	INTRODUCTION					
2.0	BACK	GROUND	1			
3.0	FINAL ADOPTED REMEDIATION CRITERIA					
4.0	SOIL VAPOUR WELLS (OCTOBER 2012) INVESTIGATION					
	4.1	Rationale for Locating Soil Vapour Wells	2			
	4.2	Soil Vapour Well (SVW8-SVW12) Investigation				
	4.2.1	Vapour Well Details	2			
	4.2.2	Sampling Methodology	2			
	4.2.3	Investigation Data QA/QC	3			
	4.2.4	QA/QC Results	3			
	4.3	Soil Vapour Well Results				
	4.4	Investigation Conclusions and Recommendations	4			
5.0	SOIL V	APOUR WELL/GW WELL INSTALLATION (DECEMBER 2012)	4			
	5.1	Rationale for Locating Soil Vapour Wells / Groundwater Well	4			
	5.2	Groundwater Well MW14CP Investigation	5			
	5.3	Soil Vapour Well (SVW13-SVW15) Investigation	5			
	5.3.1	Vapour Well Details	5			
	5.3.2	Sampling Methodology	5			
	5.3.3	Investigation Data QA/QC	5			
	5.3.4	QA/QC Results	5			
	5.3.5	Soil Vapour Well Results	5			
	5.4	Investigation Conclusions and Recommendations	6			
6.0	GW WE	ELL/SOIL VAPOUR WELL INSTALLATION (FEBRUARY 2013)	6			
	6.1	Rationale for Locating Groundwater Wells / Soil Vapour Wells	6			
	6.2	Groundwater Well MW15CP-MW20CP Investigation	6			
	6.2.1	Soil Sampling Results	6			
	6.2.2	Groundwater Well Details	6			
	6.2.3	Investigation Data QA/QC	6			
	6.2.4	QA/QC Results	7			
	6.2.5	Groundwater Well Results	7			

8
8
8
8
8
8
8
9
9

FIGURES

Figure 1 Site Location & Areas Delineated for Excise from Caravan Park

Figure 2 Sampling Locations Sept 2012- March 2013 (relevant locations from August 2012)

Figure 3 Approximate inferred area of impact around SVW10

APPENDICES

APPENDIX A

Soil Vapour Wells SVW08-SVW12

Laboratory Test Certificates

APPENDIX B

December 2012 MW14CP Borehole Log

APPENDIX C

December 2012 MW14CP & SVW08-SVW12

Laboratory Test Certificates

APPENDIX D

Feb-March 2013 MW15CP-MW20CP Borehole Logs

Pulhiished Feb-Mar 2013 MW15CP-MW20CP (GW), BH15-BH20 (Soil), EB01/EB02 (GW) and SVW16-SVW18 Laboratory Test Certificates

APPENDIX F

Limitations

1.0 INTRODUCTION

Golder Associates Pty Ltd (Golder) was commissioned by Mr sch4p4(6) Personal to conduct additional investigations at the Cairns Villa Caravan Park, Pease St, Manunda (Site). This report details the findings of the scopes of works as outlined in the following Golder correspondence:

- 087673045-034-L-Rev0, dated 21 September 2012;
- 087673045-035-L-Rev0, dated 27 November 2012;
- 087673045-036-L-Rev0, dated 18 January 2013;
- 087673045-037-L-Rev0, dated 25 January 2013;
- 087673045-038-Rev0, dated 1 March 2013; and
- 087673045-038-Rev0, dated 8 March 2013.

The aim of the additional investigations was to delineate definitively, following on from previous investigations, the impacted area of chlorinated solvent contamination on the caravan park site. Once this extent has been identified it is planned to excise the area from the current caravan park site to enable the remainder of the lot to be removed from the Environmental Management Register (EMR).

Due to the conditions encountered, a series of iterative additional investigations was conducted to finalise the delineation of the impacted area. This report describes the works conducted and the findings of the investigations.

2.0 BACKGROUND

A former dry cleaners site owned by Mr sch4p4(6) P is situated adjacent to the Cairns Villa Caravan Park. The caravan park site has been the subject of a number of various investigations since the owners of the caravan park site identified the presence of chlorinated solvents in groundwater samples collected from their site in 2007.

The primary contaminants of concern (COCs) at the caravan park site are Tetrachloroethene (PCE) and its breakdown products – Trichloroethylene (TCE) and cis-1,2-dichloroethene (cis DCE). No free phase product has been observed in groundwater samples collected from the caravan park site during previous investigations or subsequent groundwater monitoring events.

Remedial works have been carried out on the caravan park site since 2009 and comprise groundwater extraction using bottom loading pumps in wells MW4KK (within the former dry cleaner site), MW11CP, MW12CP and MW5CP. A product recovery trench was also installed in October 2010 along part of the eastern boundary of the former dry cleaner site to extract impacted groundwater and to mitigate movement of impacted groundwater between the sites.

Golder prepared a Site Conceptual Model and Qualitative Risk Assessment report (0867673045-021-R-Rev0 in October 2011) aimed at identifying acceptable remediation criteria to allow removal of the caravan park site from the EMR. This report proposed the use of soil vapour concentrations as the basis of assessing suitability for unrestricted site use. This assessment method and the agreed remediation criteria were accepted by the TPR at that time.

In August 2012, the results of a Delineation Investigation were reported by Golder (087673045-033-R-Rev0 dated 20 August 2012). This Delineation Investigation comprised the utilisation of a Membrane Interface Probe (MIP) at 29 locations to provide real-time data to assist in the evaluation of the extent of chlorinated solvent impact. The MIP data was correlated against both groundwater sample concentrations and soil vapour concentrations from existing wells. The resulting interpreted extent of contamination of concern is marked on Figure 1. This interpreted area was "squared" and aligned against existing property boundaries, where possible, to simplify possible subdivision of this area from the remainder of the caravan park site.

Following review of the Delineation Investigation report, the TPR responded the Department of Environment and Heritage Protection had concerns with the previously agreed remediation criteria and that subsequently the TPR's risk assessment expert had calculated lower criteria based on recent toxicity data published by the USEPA Integrated Risk Information System (IRIS). Golder subsequently reviewed the rationale and calculations utilised by the TPR's risk assessment expert and agree with the resulting final adopted remediation criteria (outlined in Section 3).

Further to the above, the TPR requested that confirmation soil gas wells be constructed on the proposed northern and southern boundaries to confirm final adopted remediation criteria was achieved prior to finalisation of these boundaries.

3.0 FINAL ADOPTED REMEDIATION CRITERIA

Areas with soil gas concentrations below the final adopted remediation criteria are considered suitable to allow the most sensitive land use (standard residential).

Parameter	Adopted Remediation Criteria μg/m³
Trichloroethylene (TCE)	100
Tetrachloroethylene (PCE)	2,000

4.0 SOIL VAPOUR WELLS (OCTOBER 2012) INVESTIGATION

4.1 Rationale for Locating Soil Vapour Wells

As requested by the TPR, soil vapour wells were installed along the expected northern and southern boundaries of the interpreted area of impact. These locations were based on a review of the Delineation Investigation results and discussion with the TPR.

4.2 Soil Vapour Well (SVW8-SVW12) Investigation

4.2.1 Vapour Well Details

Soil vapour wells SVW08, SVW09, SVW10, SVW11 and SVW12 were installed on 4 October 2012. The well locations are shown on Figure 2. Soil vapour well locations were installed within 200mm of the groundwater table. A single vapour sampling probe implant with attached PTFE (Teflon) tubing was installed near the base of each borehole and covered with at least 300mm of clean, washed sand. The sample point location was sealed with a 50mm thick layer of bentonite mud and the remainder of the borehole was sealed with a cement and bentonite grout. A steel Gattic-style cover was concreted into place to protect each sampling point. The vapour wells were left for a week to enable stabilisation and grout setting, prior to collection of the first round of samples.

4.2.2 Sampling Methodology

The soil vapour monitoring wells were sampled on 12 October 2012. The procedure for sampling VOCs using evacuated canisters, and for the subsequent analysis, is described in USEPA Method TO-15. The method involves the collection of whole air samples in passivated electropolished stainless steel canisters. The VOCs are subsequently separated by gas chromatography (GC), and measured by mass selective (MS) detector or multi-detector techniques.

SUMMA canister sampling was conducted in accordance with Golder Technical Procedure TP13 'Soil Gas Bore Sampling' as outlined below:

- The sampling train consisted of PTFE tubing, a glass impinger (moisture trap), flow controller and a 1 Litre SUMMA canister;
- The soil vapour bore and sampling train (PTFE tubing and glass moisture trap) were purged with a volume equal to three times the total bore and sampling train volume, immediately prior to sample collection;

- Samples were collected in low volume (1 litre) SUMMA canisters to reduce the possibility of atmospheric breakthrough and a false negative result;
- SUMMA canisters were equipped with a flow restricting orifice and a vacuum gauge to enable sampling over a nominal one hour period, again minimising the potential for atmospheric breakthrough; and
- A shroud and tracer gas was used during collection of all primary soil vapour samples.

SUMMA canister sampling was carried out in accordance with Golder Test Method No. C9 "Canister (Evacuated) Sampling for VOC and Reduced Sulphur Compounds: In Ambient Air and Source Emissions".

Sample analysis was conducted by Eurofins Air Toxics Ltd., in accordance with modified USEPA Method TO15. Eurofins Air Toxics Ltd is accredited by NELAP/Florida Department of Health for analyses of VOCs by the described method (Laboratory Accreditation No. E87680). Laboratory certificates of analysis are presented in Appendix A.

4.2.3 Investigation Data QA/QC

The following QA/QC measures were included in the sampling program:

- Above ground sampling tubing and in-line moisture traps (i.e. impingers) were replaced before sampling each bore to prevent cross contamination.
- Field blanks were collected at the rate of 1 per sampling event. Field blanks were obtained as ambient air samples recovered from the sampling train prior to soil vapour sample collection to determine possible ambient air and sample train contaminants.
- Replicates were recommended to be collected at the rate of 1 per sampling event taken as a check for repeatability. Two of the sampling canisters supplied to Golder Associates did not exhibit a vacuum and therefore it was not possible to take a replicate on site during the 12 October sampling round. A replicate was collected during the 26 October sampling round.
- Initial leak tests were conducted on each SUMMA canister prior to collection of sample to ensure that the canisters had not lost vacuum in transit and that flow controllers would not leak during collection of sample. It was discovered at this time that two of the sampling canisters were not functioning correctly meaning that not all samples planned were taken during the 12 October sampling round of sampling.
- Tracer gas (ultra high purity helium) was monitored within a shroud during collection of all primary soil vapour samples to assess the potential for atmospheric breakthrough and a false negative result.
- Chain of custody documentation was completed for all samples collected.

4.2.4 QA/QC Results

The soil vapour samples were analysed by Eurofins Air Toxics Ltd. Dilution of the sample was required for SVW10 owing to the high concentration of target species.

As part of the QA/QC programme a field blank sample was collected on 12 October 2012 and a replicate was taken during the 26 October sampling round.

No detections were recorded for either the field blank or the laboratory blank. The replicate sample for SVW11 revealed that all parameters tested were within 10% of the primary sample and helium testing indicated that the sampling was not compromised from the shroud gas, suggesting that the analytical run provided data which is of acceptable quality for the purposes of this investigation.

4.3 Soil Vapour Well Results

The results of the soil vapour samples collected from SVW8, SVW9, SVW10, SVW11 and SVW12 are presented in Table 1 below. Values in **bold** signify concentrations exceeding the final adopted remediation criteria.

Table 1: Results from Soil Vapour Sampling Round 12 October 2012

Sampling Location	Trichloroethylene (TCE) μg/m³	Tetrachloroethylene (PCE) μg/m³
SVW08	8.4	160
SVW09	None detected	21
SVW10	14,000	6,900
SVW11*	n/a	n/a
SVW12	16	None detected

^{*}Two of the soil canisters supplied had no vacuum (could not be used) and so no sample was initially taken at SVW11, the inner boundary along the southern area to be excised. This location was separately sampled and analysed.

The results of soil vapour sample SVW11 is presented in Table 2 below. Values in bold signify concentrations exceeding the final adopted remediation criteria.

Table 2: Results from Soil Vapour Sampling Round 26 October 2012

Sampling Location	Trichloroethylene (TCE) μg/m³	Tetrachloroethylene (PCE) μg/m³	
SVW11	8400	34000	

4.4 Investigation Conclusions and Recommendations

The sampling results from soil vapour wells SVW8, SVW9, SVW10, SVW11 and SVW12 revealed that all of the sampling locations were below the final adopted remediation criteria except for SVW10 which is situated at the south eastern corner extent of the delineation area.

These results provided confirmation of the northern and southern boundaries of the impacted area to be excised from the Caravan Park site (see green and yellow shaded areas Figure 1).

However, an unexpected 'hot spot' area at SVW10 indicated that further assessment of this location was required. The concentrations of chlorinated solvent impact observed at this location was not consistent with previously observed concentrations identified during previous investigations to the west and northwest of the former dry cleaner site boundary.

5.0 SOIL VAPOUR WELL/GW WELL INSTALLATION (DECEMBER 2012)

5.1 Rationale for Locating Soil Vapour Wells / Groundwater Well

To evaluate the 'hot spot' of chlorinated solvent impact detected at soil vapour monitoring location SVW10, it was proposed to install a groundwater well (MW14CP) and 3 No. soil vapour wells (SVW13, SVW14 and SVW15) within this area to further define the outer edges of this 'hot spot' and provide enough reliable data to delineate the boundary to be excised from the Caravan Park Site

In addition to all previous site investigation data and historical data for the site a Photoionisation Detector (PID) survey was carried out in the vicinity of SVW10 in order to provide data to assist locating the likely boundary edges of this impacted area. The PID survey was carried out by inserting a probe 1.0-1.3mbgl and allowing the PID to measure soil vapour within each probe location. The approximate locations and results of the PID surveys carried out in October and November are shown in Figure 3.

V

The information gathered in these investigations was used to plan the locations for the 3 soil vapour wells and the groundwater well.

5.2 Groundwater Well MW14CP Investigation

Groundwater well MW14CP was drilled and installed adjacent to soil vapour monitoring location SVW10 on 5 December 2012. The well was installed to a depth of 4.5mbgl. The borehole log is presented in Appendix B. MW14CP was developed on 6 December 2012 and sampled on 12 December 2012.

The results revealed a TCE concentration of 440µg/l and a PCE concentration of 1200µg/l in the groundwater sample from this location.

5.3 Soil Vapour Well (SVW13-SVW15) Investigation

5.3.1 Vapour Well Details

Soil vapour wells SVW13, SVW14 and SVW15 were drilled and installed on 5 and 7 December 2012. The installation of the soil vapour wells was as per Section 4.2.1 of this report. The wells were allowed to stabilise for approximately one week and were sampled on 14 December 2012.

5.3.2 Sampling Methodology

The sampling methodology was as per Section 4.2.2 of this report

5.3.3 Investigation Data QA/QC

QA/QC measures were integrated to the sampling program as per Section 4.2.3 of this report with the exception that there were no failures of canisters and it was possible to take both a replicate sample and a field blank in addition to samples from the 3 wells.

Sample analysis was conducted by Eurofins Air Toxics Ltd., in accordance with modified USEPA Method TO15. Eurofins Air Toxics Ltd is accredited by NELAP/Florida Department of Health for analyses of VOCs by the described method (Laboratory Accreditation No. E87680). Laboratory certificates of analysis are presented in Appendix C.

5.3.4 QA/QC Results

As part of the QA/QC programme a replicate sample and a field blank were collected within the field. As part of the analytical run two laboratory blanks were also run. Dilution was performed within the laboratory on samples numbers SVW13, SVW14, SVW15 and REP001 due to the presence of high level target species.

No detections were found for the parameters analysed within the field blank or either of the laboratory blanks.

The replicate sample for SVW15 revealed that all parameters tested were within 10% of the primary sample and helium testing indicated that the sampling was not compromised from the shroud gas, suggesting that the analytical run provided data which is of acceptable quality for the purposes of this investigation.

5.3.5 Soil Vapour Well Results

The results of the soil vapour samples collected from SVW13, SVW14 and SVW15 are presented in Table 3 below. Values in **bold** signify values exceeding the final adopted remediation criteria.

Table 3: Results from Soil Vapour Sampling Round December 2012

Sampling Location	Trichloroethylene (TCE) μg/m³	Tetrachloroethylene (PCE) μg/m³
SVW13	8,100	15,000
SVW14	14,000	17,000
SVW15	4,000	12,000

5.4 Investigation Conclusions and Recommendations

The groundwater results for MW14CP revealed that chlorinated solvents were present in the dissolved phase adjacent to soil vapour monitoring location SVW10, indicating that the soil vapour readings were representative of a chlorinated solvent 'hot spot'. The concentrations of chlorinated solvent impact observed at this location were not consistent with previously observed concentrations identified during previous investigations to the west and northwest of the former dry cleaner site boundary and it is supposed that this area of impact is separate from the primary identified area.

All of the soil vapour wells sampled during this monitoring round revealed concentrations of chlorinated solvents which exceed the final adopted remediation criteria. This indicated that the edges of the 'hot spot' were not defined during this round of sampling. The results also highlighted poor correlation between the PID readings and soil vapour concentrations.

It was recommended to carry out further soil vapour and groundwater sampling beyond the locations of SVW13, SVW14 and SVW15 with an aim to defining the 'hot spot' area boundaries for excise from the Caravan Park site.

6.0 GW WELL/SOIL VAPOUR WELL INSTALLATION (FEBRUARY 2013)

6.1 Rationale for Locating Groundwater Wells / Soil Vapour Wells

Given the poor correlation between PID readings and soil vapour concentrations detected during the preceding investigation, a series of borehole/groundwater wells were initially drilled stepping away from the previous soil vapour well locations to the west, south and east (2 boreholes/groundwater wells in each direction). The aim of this initial investigation was to allow collection of soil and groundwater samples to better evaluate the hotspot area extents.

Following review of the soil and groundwater sampling results, three soil vapour wells were proposed to the TPR to define the western, southern and eastern boundaries of this hotspot area. These agreed locations are shown on Figure 2.

In addition to the above described investigations, at the request of Mr sch4p4(6) P water samples were collected from two outlets from a water bore located in the caravan park site to the south east of the area of concern.

6.2 Groundwater Well MW15CP-MW20CP Investigation

6.2.1 Soil Sampling Results

A total of 12 soil samples were collected during the drilling exercise on 13 and 14 February 2013. Borehole logs are presented in Appendix D. In addition, QA/QC samples comprising an intra-laboratory and interlaboratory sample and trip blank were included as part of the sampling programme. Samples were collected from varying depths of 1.0 to 3.6mbgl.

All of the samples (including inter and intra lab duplicates and the trip blank) tested below the laboratory detection limit for all of the parameters analysed. The complete Certificate of Analysis from SGS and ALS laboratories are presented in Appendix E.

6.2.2 Groundwater Well Details

Groundwater wells MW15CP, MW16CP and MW17CP were drilled and installed on 13 February 2013 and groundwater wells MW18CP, MW19CP and MW20CP were drilled and installed on 14 February 2013. Borehole logs and well construction details are presented in Appendix D. All of the groundwater wells were developed on 15 February 2013. Groundwater sampling of the 6 wells was undertaken on 18 February 2013.

6.2.3 Investigation Data QA/QC

Samples collected were sent to SGS (primary) and ALS (secondary) laboratories.

In order to meet QA/QC Objectives, the groundwater sample collection was carried out in general accordance with standard Golder technical procedures and comprised generally:

- Recording all field data directly onto relevant standard internal Golder forms;
- Use of clean and well maintained length and location measurement equipment;
- Documented calibration of all field chemical measurement equipment;
- Standard decontamination of all non-dedicated sampling equipment prior to and between sampling events (where relevant);
- Use of laboratory supplied and prepared sample containers appropriate for particular analytes;
- Immediate placement and storage of collected samples into ice/brick-cooled containers on-site prior to storage at the site-designated refrigerators or dispatch to the laboratory in accordance with the project programme

A QA/QC programme comprising inter and intra laboratory duplicate samples and a field blank was also carried out as part of this sampling exercise. The Laboratory Certificates of Analysis are presented in Appendix E.

6.2.4 QA/QC Results

Inter-laboratory and intra-laboratory duplicate samples were submitted for sample MW18CP. All of the samples (including the primary sample) revealed concentrations below the laboratory detection limit for each of the parameters analysed. The trip blank also revealed concentrations below the laboratory detection limit for all of the parameters tested. These results suggest that the analytical data which is of acceptable quality for the purposes and suitable for use in this investigation.

6.2.5 Groundwater Well Results

The results for the parameters of concern are presented in Table 4 below.

Table 4: Groundwater Well Sampling Results February 2013

Well ID	Trichloroethylene (TCE) μg/l	Tetrachloroethylene (PCE) μg/l
MW15CP	5.8	7.0
MW16CP	7.3	14
MW17CP	19	37
MW18CP .	<0.5	<0.5
MW19CP	<0.5	<0.5
MW20CP	38	42

The groundwater results identified that the highest concentration of chlorinated solvent impact was found in MW20CP and the lowest (including below laboratory detection limit) concentrations were identified in MW15CP, MW18CP and MW19CP. This suggested that the likely edges of the chlorinated solvent impact at this location was between the groundwater monitoring locations MW16CP, MW17CP and MW18CP, and therefore it was decided to site the proposed soil vapour wells adjacent to these monitoring points.

6.3 Soil Vapour Well (SVW16-SVW18) Investigation

6.3.1 Vapour Well Details

Soil vapour wells SVW16, SVW17 and SVW18 were drilled and installed on 4 March 2013. The installation of the soil vapour wells was as per Section 4.2.1 of this report. The wells were allowed to stabilise for approximately one week and were sampled on 11 March 2013.

6.3.2 Sampling Methodology

The sampling methodology was as per Section 4.2.2 of this report.

6.3.3 Investigation Data QA/QC

QA/QC measures were integrated to the sampling program as per Section 4.2.3 of this report with the exception that there were no failures of canisters and it was possible to take both a replicate sample and a field blank in addition to samples from the 3 wells.

Sample analysis was conducted by Eurofins Air Toxics Ltd., in accordance with modified USEPA Method TO15. Eurofins Air Toxics Ltd is accredited by NELAP/Florida Department of Health for analyses of VOCs by the described method (Laboratory Accreditation No. E87680). Laboratory certificates of analysis are presented in Appendix C.

6.3.4 QA/QC Results

QA/QC measures were integrated to the sampling program as per Section 4.2.3 of this report with the exception that there were no failures of canisters and it was possible to take both a replicate sample and a field blank in addition to samples from the three No. wells.

As part of the QA/QC programme a replicate sample and a field blank were collected within the field. As part of the analytical run a laboratory blank was also run.

Detections were recorded for the field blank but none were revealed for laboratory blank. The detections within the field blank were consistent with fuel combustion emissions; it is therefore likely that the field blank was taken in the vicinity of a fuel exhaust emission. None of the parameters of concern were revealed in the field blank. The replicate sample for SVW16 revealed that all parameters tested were within acceptable limits of the primary sample and helium testing indicated that the sampling was not compromised from the shroud gas. This suggests that the analytical run provided data is of acceptable quality for the purposes of this investigation.

6.3.5 Soil Vapour Well Results

The results of the soil vapour samples collected from SVW16, SVW17 and SVW18 are presented in Table 5 below. The complete laboratory Certificate of Analysis is presented in Appendix E.

Table 5: Results from Soil Vapour Sampling Round March 2013

Sampling Location	Trichloroethylene (TCE) μg/m ³	Tetrachloroethylene (PCE) μg/m³
SVW16	100	1300
SVW17	84	1300
SVW18	72	160

6.4 Bore Water samples

A groundwater bore is located to the south east of the area of concern (see Figure 2). This bore is understood to be screened within deeper water bearing deposits underlying the site. It is understood that this bore has not been used for many years, however, at the time of our inspection it was noted that water was seeping from bore fittings. As no pumping was being conducted, it appears that this bore is artesian and intersects a confined aquifer below the near surface unconfined aquifer (the subject of contamination assessment). These bore outlets sampled were to the southeast of the swimming pool on the Caravan Park

site. Bore water samples EB01 and EB02 were collected on 11 March 2013 and sent to SGS laboratories for analysis.

These samples tested below the laboratory detection limit for all of the parameters analysed. The full Certificate of Analysis is presented in Appendix E.

6.5 Investigation Conclusions and Recommendations

The soil vapour samples collected from SVW16, SVW17 and SVW18 revealed concentrations of the contaminants of concern at or below the final adopted remediation criteria.

These results are considered suitable to finalise the boundaries of the impacted area. Figures 1 and 2 indicate the approximate location of the area to be excised.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The area of impact on the caravan park site has been evaluated on the basis of the investigations carried out since August 2012. Soil vapour wells (SVW07, SVW08, SVW09, SVW12, SVW16, SVW17 and SVW18) have been positioned on proposed boundaries to delineate the area of impact. The soil vapour readings in these boundary wells indicate contaminant of concern concentrations below the final adopted remediation criteria. It is recommended that a licensed surveyor be engaged to accurately locate the soil vapour well locations defining the boundaries of this area.

The portion of the caravan park outside of the area of impact is considered suitable for removal from the Environmental Management Register once the area of impact has been excised from the allotment forming the caravan park site. This conclusion is contingent upon continued extraction (pumping) of impacted waters within the area of impact or implementation of other long or short term remediation/management measures to prevent further migration of contamination.

8.0 LIMITATIONS

Your attention is drawn to the document "Limitations", which is included in Appendix F of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information

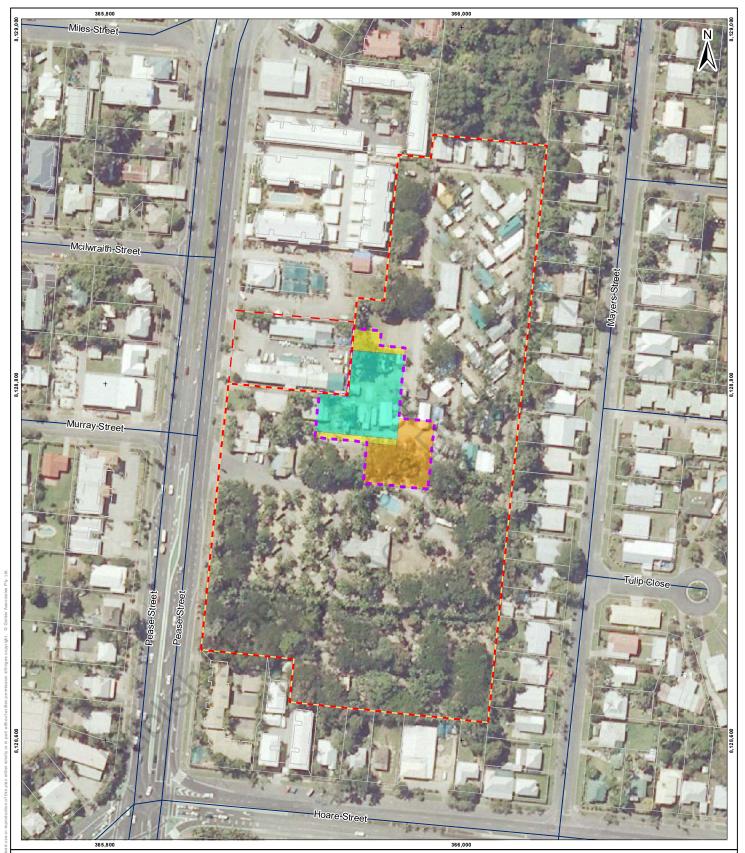
sch4p4(6) Personal information

sch4p4(6) Personal sch4p4(6) Person

sch4p4(6) Person

Senior Environmental Engineer

Principal Environmental Engineer


CMC/PKS/hlb

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

\\cns1-s-file02\jobs\env\2008\087673045 - kwikleen dry cleaners, pease st\correspondence out\087673045-40-r-rev0 delineation investigation aug12_mar13.docx

DELINEATION INVESTIGATIONS

HOSPITALITY SERVICES

SITE LOCATION & AREAS DELINIEATED FOR EXCISE FROM CARAVAN PARK

Area To Be Excised

Area of Concern

August Investigation 2012 October Investigation 2012 Investigation 2013 CaravanPark

Kwikkleen Digital Cadastral Data

NOTES COPYRIGHT

L. Base map data copyright Mapinfo Australia Pty Ltd. 2. DCDB copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2011. 3. Aerial photography copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2006.

SCALE (at A3) 1:1,500

DATUM GDA 94, PROJECTION MGA Zone 55

087673045-040-R 08 APR 2013 PROJECT: DATE: DRAWN: BAG CHECKED: PKS

FIGURE 1

Page 49 of 406

DELINEATION INVESTIGATIONS

HOSPITALITY SERVICES

SAMPLING LOCATIONS SEPT 2012 - MARCH 2013

LEGEND

Soil Gas Well Locations

August Investigation COPYRIGHT 2012

October Investigation 2012

Investigation 2012 January Investigation 2013

Groundwater Monitoring Wells Locations

Investigation 2012 2013

NOTES

J. Base map data copyright Mapinfo Australia Pty Ltd 2. DCDB copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2011. 3. Aerial photography copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2006.

SCALE (at A3) 1:500

DATUM GDA 94, PROJECTION MGA Zone 55

087673045-040-R 08 APR 2013 PROJECT: DATE: DRAWN: CHECKED:

FIGURE 2

MIP Location August 2012


Page 50 of 406

ADDITIONAL INVESTIGATIONS

HOSPITALITY SERVICES

INFERRED AREA OF ADDITIONAL IMPACT OCTOBER 2012

LEGEND

PID Probe Locations & PID Reading (ppm) - 8 Nov 2012

GW Monitoring Well Inferred Area of Impact around SVW10 (Oct 2012)

Cabins

CaravanPark Kwikleen

NOTES

COPYRIGHT

PID Probe Locations & Base map data copyright Mapinfo Australia Ply Ltd. 30 Nov 2012 Guensland (Department of Natural Resources, Mines and Water) 2011.

SC ALE (at A3) 1:400 DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: DATE:

087673045-040-R 10 APR 2013 DRAWN: CHECKED:

FIGURE 3

Page 51 of 406

APPENDIX A

with the don Results of the street of the st **Soil Vapour Wells SVW08-SVW12 Laboratory Test Certificates**

10/31/2012

Mr. sch4p4(6) Personal info Golder Associates, Australia 216 Draper Street

Cairns, Queensland 4870

Project Name: Kwikleen Project #: 087673045 Workorder #: 1210378A

Dear Mr. sch4p4(6) Personal ir

The following report includes the data for the above referenced project for sample(s) received on 10/17/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal at sch4p4(6) Personal if you have any questions regarding the data in this report.

Regards,

sch4p4(6) Personal information

sch4p4(6) Personal info

Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-985-1020 www.airtoxics.com

WORK ORDER #: 1210378A

Work Order Summary

CLIENT: Mr. sch4p4(6) Person BILL TO: Accounts Payable

Golder Associates, Australia Golder Associates, Australia

216 Draper Street PO BOX 6079

Cairns, Queensland 4870 Hawthorne, Australia 3121

PHONE: +61 7 4054 8200 P.O. # Q3212

FAX: +61 7 4054 8201 PROJECT # 087673045 Kwikleen

DATE RECEIVED: 10/17/2012 **CONTACT:** sch4p4(6) Personal **DATE COMPLETED:** 10/31/2012

		\0	RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVW8	Modified TO-15	9.0 "Hg	15 psi
02A	SVW9	Modified TO-15	0.5 "Hg	15 psi
03A	SVW10	Modified TO-15	9.0 "Hg	15 psi
04A	SVW12	Modified TO-15	10.5 "Hg	15 psi
05A	FB01	Modified TO-15	9.0 "Hg	15 psi
06A	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08AA	LCSD	Modified TO-15	NA	NA
08A LCS		onRelike		

sch4p4(6) Personal information

CERTIFIED BY:

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

ilac-MRA

DATE: <u>10/31/12</u>

Page 2 of 23

LABORATORY NARRATIVE EPA Method TO-15 Golder Associates, Australia Workorder# 1210378A

Five 1 Liter Summa Canister samples were received on October 17, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample SVW10 due to the presence of high level target species.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW8 Lab ID#: 1210378A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	14	19	34	46
Chloroform	1.4	13	7.0	65
Trichloroethene	1.4	1.6	7.8	8.4
Bromodichloromethane	1.4	2.2	9.7	14
Toluene	1.4	1.8	5.4	6.6
Tetrachloroethene	1.4	24	9.8	160
m,p-Xylene	1.4	1.4	6.3	6.3
Naphthalene	5.8	6.7	30	35

Client Sample ID: SVW9 Lab ID#: 1210378A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	8.4	31	16	59
Acetone	21	24	50	56
Hexane	2.1	6.0	7.4	21
Cyclohexane	2.1	3.9	7.2	13
1,2-Dichloroethane	2.1	2.1	8.5	8.6
Toluene	2.1	52	7.9	200
Tetrachloroethene	2.1	3.2	14	21
m,p-Xylene	2.1	3.3	9.1	14
Styrene	2.1	2.8	8.9	12
Naphthalene	8.4	14	44	75

Client Sample ID: SVW10 Lab ID#: 1210378A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
trans-1,2-Dichloroethene	12	15	46	59	
cis-1,2-Dichloroethene	12	730	46	2900	
Trichloroethene	12	2600	62	14000	
Tetrachloroethene	12	1000	78	6900	

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW12 Lab ID#: 1210378A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	1.6	2.9	8.4	16
Naphthalene	6.2	28	33	150
Client Sample ID: FB01		· C()		
Lab ID#: 1210378A-05A				
No Detections Were Found.	Co			
	0,0	~		
	40	70		
	15° 05			
	65 00			
	20/1			
	Resolices			
0,0				
(19)				
:0)				

Client Sample ID: SVW8 Lab ID#: 1210378A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102415 2.89		of Collection: 10/12 of Analysis: 10/24/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	7.1	Not Detected
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.1	Not Detected
Ethanol	5.8	Not Detected	11	Not Detected
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	19	34	46
2-Propanol	5.8	Not Detected	14	Not Detected
Carbon Disulfide	5.8	Not Detected	18	Not Detected
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5. <i>1</i> 5.1	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	13	7.0	65
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
	1.4	Not Detected	6.8	Not Detected
2,2,4-Trimethylpentane	1.4	Not Detected	4.6	Not Detected
Benzene 1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
	1.4		5.9	Not Detected
Heptane Trichloroothono	1. 4 1.4	Not Detected 1.6	5.9 7.8	8.4
Trichloroethene	1.4 1.4	Not Detected	7.8 6.7	Not Detected
1,2-Dichloropropane 1,4-Dioxane	5.8	Not Detected Not Detected	6.7 21	Not Detected
Bromodichloromethane	5.6 1.4	2.2	9.7	14
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	1.8	5.4	6.6
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	24	9.8	160
2-Hexanone	5.8	Not Detected	24	Not Detected

m,p-Xylene

o-Xylene

Styrene

Client Sample ID: SVW8 Lab ID#: 1210378A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102415 2.89	Date of Collection: 10/12/12 10:00:00 A Date of Analysis: 10/24/12 04:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.6	Not Detected
Ethyl Benzene	1.4	Not Detected	6.3	Not Detected

1.4

1.4

1.4

5.8

5.8

5.8

1.4

Not Detected

Not Detected

Not Detected

Not Detected

6.7

6.3

Not Detected

Not Detected

Not Detected

Not Detected

35

6.3

6.3

6.2

43

62

30

Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected

Container Type: 1 Liter Summa Canister

1,2,4-Trichlorobenzene

Hexachlorobutadiene

Naphthalene

:.6		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SVW9 Lab ID#: 1210378A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102416 4.20		of Collection: 10/12 of Analysis: 10/24/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.1	Not Detected	10	Not Detected
Freon 114	2.1	Not Detected	15	Not Detected
Chloromethane	21	Not Detected	43	Not Detected
Vinyl Chloride	2.1	Not Detected	5.4	Not Detected
1,3-Butadiene	2.1	Not Detected	4.6	Not Detected
Bromomethane	21	Not Detected	82	Not Detected
Chloroethane	8.4	Not Detected	22	Not Detected
Freon 11	2.1	Not Detected	12	Not Detected
Ethanol	8.4	31	16	59
Freon 113	2.1	Not Detected	16	Not Detected
1,1-Dichloroethene	2.1	Not Detected	8.3	Not Detected
Acetone	21	24	50	56
2-Propanol	8.4	Not Detected	21	Not Detected
Carbon Disulfide	8.4	Not Detected	26	Not Detected
3-Chloropropene	8.4	Not Detected	26	Not Detected
Methylene Chloride	21	Not Detected	73	Not Detected
Methyl tert-butyl ether	2.1	Not Detected	7.6	Not Detected
trans-1,2-Dichloroethene	2.1	Not Detected	8.3	Not Detected
Hexane	2.1	6.0	7.4	21
1,1-Dichloroethane	2.1	Not Detected	8.5	Not Detected
2-Butanone (Methyl Ethyl Ketone)	8.4	Not Detected	25	Not Detected
cis-1,2-Dichloroethene	2.1	Not Detected	8.3	Not Detected
Tetrahydrofuran	2.1	Not Detected	6.2	Not Detected
Chloroform	2.1	Not Detected	10	Not Detected
1,1,1-Trichloroethane	2.1	Not Detected	11	Not Detected
Cyclohexane	2.1	3.9	7.2	13
Carbon Tetrachloride	2.1	Not Detected	13	Not Detected
2,2,4-Trimethylpentane	2.1	Not Detected	9.8	Not Detected
Benzene	2.1	Not Detected	6.7	Not Detected
1,2-Dichloroethane	2.1	2.1	8.5	8.6
Heptane	2.1	Not Detected	8.6	Not Detected
Trichloroethene	2.1	Not Detected	11	Not Detected
1,2-Dichloropropane	2.1	Not Detected	9.7	Not Detected
1,4-Dioxane	8.4	Not Detected	30	Not Detected
Bromodichloromethane	2.1	Not Detected	14	Not Detected
cis-1,3-Dichloropropene	2.1	Not Detected	9.5	Not Detected
4-Methyl-2-pentanone	2.1	Not Detected	8.6	Not Detected
Toluene	2.1	52	7.9	200
trans-1,3-Dichloropropene	2.1	Not Detected	9.5	Not Detected
1,1,2-Trichloroethane	2.1	Not Detected	11	Not Detected
Tetrachloroethene	2.1	3.2	14	21
2-Hexanone	8.4	Not Detected	34	- ·

Client Sample ID: SVW9 Lab ID#: 1210378A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102416 4.20	Date of Collection: 10/12/12 10:45:00 A Date of Analysis: 10/24/12 04:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	2.1	Not Detected	18	Not Detected
1,2-Dibromoethane (EDB)	2.1	Not Detected	16	Not Detected
Chlorobenzene	2.1	Not Detected	9.7	Not Detected
Ethyl Benzene	2.1	Not Detected	9.1	Not Detected
m,p-Xylene	2.1	3.3	9.1	14
o-Xylene	2.1	Not Detected	9.1	Not Detected
Styrene	2.1	2.8	8.9	12
Bromoform	2.1	Not Detected	22	Not Detected
Cumene	2.1	Not Detected	10	Not Detected
1,1,2,2-Tetrachloroethane	2.1	Not Detected	14	Not Detected
Propylbenzene	2.1	Not Detected	10	Not Detected
4-Ethyltoluene	2.1	Not Detected	10	Not Detected
1,3,5-Trimethylbenzene	2.1	Not Detected	10	Not Detected
1,2,4-Trimethylbenzene	2.1	Not Detected	10	Not Detected
1,3-Dichlorobenzene	2.1	Not Detected	13	Not Detected
1,4-Dichlorobenzene	2.1	Not Detected	13	Not Detected
alpha-Chlorotoluene	2.1	Not Detected	11	Not Detected
1,2-Dichlorobenzene	2.1	Not Detected	13	Not Detected
1,2,4-Trichlorobenzene	8.4	Not Detected	62	Not Detected
Hexachlorobutadiene	8.4	Not Detected	90	Not Detected
Naphthalene	8.4	14	44	75

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SVW10 Lab ID#: 1210378A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102419 23.1		of Collection: 10/2 of Analysis: 10/2		
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)	
Freon 12	12	Not Detected	57	Not Detected	
Freon 114	12	Not Detected	81	Not Detected	
Chloromethane	120	Not Detected	240	Not Detected	
Vinyl Chloride	12	Not Detected	30	Not Detected	
1,3-Butadiene	12	Not Detected	26	Not Detected	
Bromomethane	120	Not Detected	450	Not Detected	
Chloroethane	46	Not Detected	120	Not Detected	
Freon 11	12	Not Detected	65	Not Detected	
Ethanol	46	Not Detected	87	Not Detected	
Freon 113	12	Not Detected	88	Not Detected	
1,1-Dichloroethene	12	Not Detected	46	Not Detected	
Acetone	120	Not Detected	270	Not Detecte	
2-Propanol	46	Not Detected	110	Not Detecte	
Carbon Disulfide	46	Not Detected	140	Not Detecte	
3-Chloropropene	46	Not Detected	140	Not Detecte	
Methylene Chloride	120	Not Detected	400	Not Detecte	
Methyl tert-butyl ether	12	Not Detected	42	Not Detected	
trans-1,2-Dichloroethene	12	15	46	59	
Hexane	12	Not Detected	41	Not Detecte	
1,1-Dichloroethane	12	Not Detected	47	Not Detecte	
	46	Not Detected	140	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	12	730	46	2900	
cis-1,2-Dichloroethene	12	Not Detected	34	Not Detected	
Tetrahydrofuran	12	Not Detected Not Detected	56	Not Detected	
Chloroform	12	Not Detected	63	Not Detected	
1,1,1-Trichloroethane					
Cyclohexane	12	Not Detected	40	Not Detected	
Carbon Tetrachloride	12	Not Detected	73	Not Detecte	
2,2,4-Trimethylpentane	12	Not Detected	54	Not Detected	
Benzene	12	Not Detected	37	Not Detecte	
1,2-Dichloroethane	12	Not Detected	47	Not Detected	
Heptane	12	Not Detected	47	Not Detected	
Trichloroethene	12	2600	62	14000	
1,2-Dichloropropane	12	Not Detected	53	Not Detecte	
1,4-Dioxane	46	Not Detected	170	Not Detected	
Bromodichloromethane	12	Not Detected	77	Not Detected	
cis-1,3-Dichloropropene	12	Not Detected	52	Not Detected	
4-Methyl-2-pentanone	12	Not Detected	47	Not Detected	
Toluene	12	Not Detected	44	Not Detected	
trans-1,3-Dichloropropene	12	Not Detected	52	Not Detected	
1,1,2-Trichloroethane	12	Not Detected	63	Not Detected	
Tetrachloroethene	12	1000	78	6900	
2-Hexanone	46	Not Detected	190	Not Detected	

Client Sample ID: SVW10 Lab ID#: 1210378A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p102419 Date of Collection: 10/12/12 11:30:00 A		12/12 11:30:00 A	
Dil. Factor:	23.1	Date	of Analysis: 10/24	/12 06:10 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	12	Not Detected	98	Not Detected
1,2-Dibromoethane (EDB)	12	Not Detected	89	Not Detected
Chlorobenzene	12	Not Detected	53	Not Detected
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	Not Detected	50	Not Detected
o-Xylene	12	Not Detected	50	Not Detected
Styrene	12	Not Detected	49	Not Detected
Bromoform	12	Not Detected	120	Not Detected
Cumene	12	Not Detected	57	Not Detected
1,1,2,2-Tetrachloroethane	12	Not Detected	79	Not Detected
Propylbenzene	12	Not Detected	57	Not Detected
4-Ethyltoluene	12	Not Detected	57	Not Detected
1,3,5-Trimethylbenzene	12	Not Detected	57	Not Detected
1,2,4-Trimethylbenzene	12	Not Detected	57	Not Detected
1,3-Dichlorobenzene	12	Not Detected	69	Not Detected
1,4-Dichlorobenzene	12	Not Detected	69	Not Detected
alpha-Chlorotoluene	12	Not Detected	60	Not Detected

12

46

46

46

Container Type: 1 Liter Summa Canister

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	94	70-130

Not Detected

Not Detected

Not Detected

Not Detected

69

340

490

240

Not Detected

Not Detected Not Detected

Not Detected

Client Sample ID: SVW12 Lab ID#: 1210378A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

Compound Rpt. Limit (ppbv) Amount (ppbv) Rpt. (ug) Freon 12 1.6 Not Detected 7 Freon 114 1.6 Not Detected 2 Chloromethane 16 Not Detected 3 Vinyl Chloride 1.6 Not Detected 3 1,3-Butadiene 1.6 Not Detected 3 Bromomethane 6.2 Not Detected 6 Chloroethane 6.2 Not Detected 6 Freon 11 1.6 Not Detected 6 Freon 113 1.6 Not Detected 6 Freon 113 1.6 Not Detected 6 Acetone 1.6 Not Detected 6 2-Propanol 6.2 Not Detected 6 2-Propanol 6.2 Not Detected 6 3-Chloropropene 6.2 Not Detected 6 3-Chloropropene 6.2 Not Detected 6 Methyl tert-butyl ether 1.6 Not Detected 6	ction: 10/12/12 12:00:00 P sis: 10/24/12 05:15 PM
Freon 114 1.6 Not Detected Chloromethane 16 Not Detected Vinyl Chloride 1.6 Not Detected 1,3-Butadiene 1.6 Not Detected Bromomethane 16 Not Detected Chloroethane 6.2 Not Detected Freon 11 1.6 Not Detected Ethanol 6.2 Not Detected Freon 113 1.6 Not Detected 1,1-Dichloroethene 1.6 Not Detected Acetone 16 Not Detected 2-Propanol 6.2 Not Detected Carbon Disulfide 6.2 Not Detected 3-Chloropropene 6.2 Not Detected Methylene Chloride 16 Not Detected Methylene Chloride 16 Not Detected Methyl tert-butyl ether 1.6 Not Detected 4 Exame 1.6 Not Detected 5 Eyltanone (Methyl Ethyl Ketone) 1.6 Not Detected 6 Cabon (Methyl Ethyl Ketone) 6.2 Not Detected <th>Limit Amount /m3) (ug/m3)</th>	Limit Amount /m3) (ug/m3)
Chloromethane 16 Not Detected Vinyl Chloride 1.6 Not Detected 4 1,3-Butadiene 1.6 Not Detected 3 Bromomethane 16 Not Detected 6 Chloroethane 6.2 Not Detected 8 Freon 11 1.6 Not Detected 8 Ethanol 6.2 Not Detected 6 Freon 113 1.6 Not Detected 6 1,1-Dichloroethene 1.6 Not Detected 6 Acetone 16 Not Detected 6 Acetone 16 Not Detected 6 Carbon Disulfide 6.2 Not Detected 6 3-Chloropropene 6.2 Not Detected 6 Methylene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 6 1,1-Dichloroethane 1.6 Not Detected 6	.7 Not Detected
Vinyl Chloride 1.6 Not Detected 4 1,3-Butadiene 1.6 Not Detected 3 Bromomethane 16 Not Detected 6 Chloroethane 6.2 Not Detected 6 Freon 11 1.6 Not Detected 8 Ethanol 6.2 Not Detected 6 Freon 113 1.6 Not Detected 6 7.1-Dichloroethene 1.6 Not Detected 6 Acetone 16 Not Detected 6 2-Propanol 6.2 Not Detected 6 Carbon Disulfide 6.2 Not Detected 6 3-Chloropropene 6.2 Not Detected 6 Methylene Chloride 16 Not Detected 5 Methylene Chloride 16 Not Detected 5 Methylene Chloride 16 Not Detected 5 Methylene Chloride 16 Not Detected 6 Methylene Chloride 16 Not Detected 6	1 Not Detected
1,3-Butadiene	Not Detected
1,3-Butadiene	.0 Not Detected
Seromomethane	.4 Not Detected
Freon 11 1.6 Not Detected 8 Ethanol 6.2 Not Detected 7 Freon 113 1.6 Not Detected 7 1,1-Dichloroethene 1.6 Not Detected 6 Acetone 16 Not Detected 3 2-Propanol 6.2 Not Detected 3 Carbon Disulfide 6.2 Not Detected 6 3-Chloropropene 6.2 Not Detected 6 Methylene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 Hexane 1.6 Not Detected 5 Hexane 1.6 Not Detected 6 1,2-Dichloroethane 1.6 Not Detected	Not Detected
Ethanol 6.2 Not Detected Freon 113 1.6 Not Detected 1,1-Dichloroethene 1.6 Not Detected Acetone 16 Not Detected 2-Propanol 6.2 Not Detected Carbon Disulfide 6.2 Not Detected 3-Chloropropene 6.2 Not Detected Methylene Chloride 16 Not Detected Methyl tert-butyl ether 1.6 Not Detected trans-1,2-Dichloroethene 1.6 Not Detected trans-1,2-Dichloroethene 1.6 Not Detected trans-1,2-Dichloroethane 1.6 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected Cisc-1,2-Dichloroethene 1.6 Not Detected Cisc-1,2-Dichloroethane 1.6 Not Detected Chloroform 1.6 Not Detected Cyclohexane 1.6 Not Detected Cyclohexane 1.6 Not Detected Carbon Tetrachlo	6 Not Detected
Ethanol 6.2 Not Detected Freon 113 1.6 Not Detected 1,1-Dichloroethene 1.6 Not Detected Acetone 16 Not Detected 2-Propanol 6.2 Not Detected Carbon Disulfide 6.2 Not Detected 3-Chloropropene 6.2 Not Detected Methylene Chloride 16 Not Detected Methyl tert-butyl ether 1.6 Not Detected trans-1,2-Dichloroethene 1.6 Not Detected Hexane 1.6 Not Detected 1,1-Dichloroethane 1.6 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected Cis-1,2-Dichloroethene 1.6 Not Detected Chloroform 1.6 Not Detected Chloroform 1.6 Not Detected Cyclohexane 1.6 Not Detected Cyclohexane 1.6 Not Detected Carbon Tetrachloride 1.6	.7 Not Detected
1,1-Dichloroethene 1.6 Not Detected 6 Acetone 16 Not Detected 3 2-Propanol 6.2 Not Detected 3 Carbon Disulfide 6.2 Not Detected 3 3-Chloropropene 6.2 Not Detected 3 Methylene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 6 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 Cis-1,2-Dichloroethane 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 7 Chloroform 1.6 Not Detected 7 T,1,1-Trichloroethane 1.6 Not Detected 9 Oyclohexane <	2 Not Detected
1,1-Dichloroethene 1.6 Not Detected 6 Acetone 16 Not Detected 3 2-Propanol 6.2 Not Detected 3 Carbon Disulfide 6.2 Not Detected 4 3-Chloropropene 6.2 Not Detected 5 Methylene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 6 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 Cis-1,2-Dichloroethene 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 6 Chloroform 1.6 Not Detected 7 Cyclohexane 1.6 Not Detected 8 Carbon Tetrachloride <t< td=""><td>2 Not Detected</td></t<>	2 Not Detected
Acetone 16 Not Detected 3 2-Propanol 6.2 Not Detected 3 Carbon Disulfide 6.2 Not Detected 3 3-Chloropropene 6.2 Not Detected 3 Methyl ene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 6 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 4 Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 5 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1	.2 Not Detected
2-Propanol 6.2 Not Detected Carbon Disulfide 6.2 Not Detected 3-Chloropropene 6.2 Not Detected Methylene Chloride 16 Not Detected Methyl tert-butyl ether 1.6 Not Detected trans-1,2-Dichloroethene 1.6 Not Detected Hexane 1.6 Not Detected 1,1-Dichloroethane 1.6 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected Cerbicoloroethane 1.6 Not Detected Tetrahydrofuran 1.6 Not Detected Chloroform 1.6 Not Detected Chloroform 1.6 Not Detected Chloroform 1.6 Not Detected Carbon Tetrachloride 1.6 Not Detected Carbon Tetrachloride 1.6 Not Detected Carbon Tetrachloroethane 1.6 Not Detected	7 Not Detected
Carbon Disulfide 3-Chloropropene 6.2 Not Detected 3-Chloropropene 6.2 Not Detected 6.2 Not Detected 6.2 Not Detected 6.2 Not Detected 6.3 Not Detected 6.4 Not Detected 6.5 Not Detected 6.5 Not Detected 6.6 Not Detected 6.7 Not Detected 6.7 Not Detected 6.8 Not Detected 6.9 Not Detected 6.9 Not Detected 6.0 Not Detected 6.0 Not Detected 6.1 Not Detected 6.2 Not Detected 6.2 Not Detected 6.2 Not Detected 6.2 Not Detected 6.3 Not Detected 6.4 Not Detected 6.5 Not Detected 6.6 Not Detected 6.7 Not Detected 6.7 Not Detected 6.8 Not Detected 6.9 Not Detected 6.0 Not Detected 6.0 Not Detected 6.1 Not Detected 6.1 Not Detected 6.1 Not Detected 6.2 Not Detected 6.3 Not Detected 6.4 Not Detected 6.5 Not Detected 6.6 Not Detected 6.7 Not	5 Not Detected
Section Sect	9 Not Detected
Methylene Chloride 16 Not Detected 5 Methyl tert-butyl ether 1.6 Not Detected 5 trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 6 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 Cis-1,2-Dichloroethene 1.6 Not Detected 6 Cis-1,1,2-Dichloroethane 1.6 Not Detected 7 Carbon Tetrachloride 1.6 Not Detected 7 Benzene 1.6 Not Detected 7 Benzene 1.6 Not Detected 6 Cyclohloroethane 1.6 Not Detected 6 <td>9 Not Detected</td>	9 Not Detected
Methyl tert-butyl ether 1.6 Not Detected 5 trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 5 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 Cis-1,2-Dichloroethene 1.6 Not Detected 6 Cis-1,1-C-Dichloroethane 1.6 Not Detected 7 Carbon Tetrachloride 1.6 Not Detected 7 Benzene 1.6 Not Detected 7 Benzene 1.6 Not Detected 6 1,2-Dichloroethane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 <td>Not Detected</td>	Not Detected
trans-1,2-Dichloroethene 1.6 Not Detected 6 Hexane 1.6 Not Detected 5 1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 cis-1,2-Dichloroethene 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 4 Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 7 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 7 Bromodichloromethane 1.6	.6 Not Detected
Hexane	.2 Not Detected
1,1-Dichloroethane 1.6 Not Detected 6 2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected 6 cis-1,2-Dichloroethene 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 4 Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 4-Petane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 7 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6<	.5 Not Detecte
2-Butanone (Methyl Ethyl Ketone) 6.2 Not Detected cis-1,2-Dichloroethene 1.6 Not Detected Tetrahydrofuran 1.6 Not Detected Chloroform 1.6 Not Detected 1,1,1-Trichloroethane 1.6 Not Detected Cyclohexane 1.6 Not Detected Carbon Tetrachloride 1.6 Not Detected 2,2,4-Trimethylpentane 1.6 Not Detected Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 7 Bromodichloromethane 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 Not Detected 5 Toluene <td>.3 Not Detected</td>	.3 Not Detected
cis-1,2-Dichloroethene 1.6 Not Detected 6 Tetrahydrofuran 1.6 Not Detected 4 Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 6 T,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 7 1,4-Dioxane 6.2 Not Detected 7 2-3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 5 Toluene 1.6 Not Detected 5 Toluene 1.6 Not Detected	8 Not Detected
Tetrahydrofuran 1.6 Not Detected 4 Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 6 Trichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 Toluene 1.6 Not Detected 5	.2 Not Detected
Chloroform 1.6 Not Detected 7 1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 Toluene 1.6 Not Detected 5 Toluene 1.6 Not Detected 5	.6 Not Detected
1,1,1-Trichloroethane 1.6 Not Detected 8 Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 5 Toluene 1.6 Not Detected 5 Toluene 1.6 Not Detected 7 Not Detected 7 7 Toluene 1.6 Not Detected 7 Toluene 1.6 Not Detected 7	.6 Not Detected
Cyclohexane 1.6 Not Detected 5 Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.5 Not Detected
Carbon Tetrachloride 1.6 Not Detected 9 2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 Not Detected 7 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 5 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.4 Not Detected
2,2,4-Trimethylpentane 1.6 Not Detected 7 Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 2.9 8 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 5	.8 Not Detected
Benzene 1.6 Not Detected 5 1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 2.9 8 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.3 Not Detected
1,2-Dichloroethane 1.6 Not Detected 6 Heptane 1.6 Not Detected 6 Trichloroethene 1.6 2.9 8 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.0 Not Detected
Heptane	.3 Not Detected
Trichloroethene 1.6 2.9 8 1,2-Dichloropropane 1.6 Not Detected 7 1,4-Dioxane 6.2 Not Detected 2 Bromodichloromethane 1.6 Not Detected 3 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.4 Not Detected
1,2-Dichloropropane1.6Not Detected71,4-Dioxane6.2Not Detected2Bromodichloromethane1.6Not Detected3cis-1,3-Dichloropropene1.6Not Detected74-Methyl-2-pentanone1.6Not Detected6Toluene1.6Not Detected5trans-1,3-Dichloropropene1.6Not Detected7	.4 16
1,4-Dioxane6.2Not Detected2Bromodichloromethane1.6Not Detected3cis-1,3-Dichloropropene1.6Not Detected74-Methyl-2-pentanone1.6Not Detected6Toluene1.6Not Detected5trans-1,3-Dichloropropene1.6Not Detected7	.2 Not Detected
Bromodichloromethane 1.6 Not Detected 7 cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	2 Not Detected
cis-1,3-Dichloropropene 1.6 Not Detected 7 4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	0 Not Detected
4-Methyl-2-pentanone 1.6 Not Detected 6 Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.0 Not Detected
Toluene 1.6 Not Detected 5 trans-1,3-Dichloropropene 1.6 Not Detected 7	.4 Not Detected
trans-1,3-Dichloropropene 1.6 Not Detected 7	.8 Not Detected
	.0 Not Detected
1,1,2-Trichloroethane 1.6 Not Detected 8	.5 Not Detected
· ·	
	0 Not Detected 25 Not Detected

Client Sample ID: SVW12 Lab ID#: 1210378A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p102417	Date of Collection: 10/12/12 12:00:00 P
Dil. Factor:	3.11	Date of Analysis: 10/24/12 05:15 PM

	· · · · ·		wie er 7 milan jener 10.2	17 12 00:10 1 W
Compound	Rpt. Lin (ppbv)		Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.2	Not Detected
Ethyl Benzene	1.6	Not Detected	6.8	Not Detected
m,p-Xylene	1.6	Not Detected	6.8	Not Detected
o-Xylene	1.6	Not Detected	6.8	Not Detected
Styrene	1.6	Not Detected	6.6	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.6	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	Not Detected	7.6	Not Detected
4-Ethyltoluene	1.6	Not Detected	7.6	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	7.6	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	7.6	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.0	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,2,4-Trichlorobenzene	6.2	Not Detected	46	Not Detected
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
Naphthalene	6.2	28	33	150

Container Type: 1 Liter Summa Canister

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: FB01 Lab ID#: 1210378A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102418 2.89		f Collection: 10/2/ f Analysis: 10/2/	/12/12 12:10:00 P 4/12 05:41 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	7.1	Not Detected
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.1	Not Detected
Ethanol	5.8	Not Detected	11	Not Detected
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	Not Detected	34	Not Detected
2-Propanol	5.8	Not Detected	14	Not Detected
Carbon Disulfide	5.8	Not Detected	18	Not Detected
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5.1	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	Not Detected	6.8	Not Detected
Benzene	1.4	Not Detected	4.6	Not Detected
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	Not Detected	7.8	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	Not Detected	5.4	Not Detected
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Detected	24	Not Detected

Client Sample ID: FB01 Lab ID#: 1210378A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102418 2.89	Date of Collection: 10/12/12 12:10:00 P Date of Analysis: 10/24/12 05:41 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.6	Not Detected
Ethyl Benzene	1.4	Not Detected	6.3	Not Detected
m,p-Xylene	1.4	Not Detected	6.3	Not Detected
o-Xylene	1.4	Not Detected	6.3	Not Detected
Styrene	1.4	Not Detected	6.2	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Naphthalene	5.8	Not Detected	30	Not Detected

Container Type: 1 Liter Summa Canister

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: Lab Blank Lab ID#: 1210378A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102407 1.00	Date of Collection: NA Date of Analysis: 10/24/12 11:32 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1210378A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p102407 1.00	Date of Collection: NA Date of Analysis: 10/24/12 11:32 AM		2 11:32 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: CCV Lab ID#: 1210378A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:01 AM

Freon 12 92 Freon 114 90 Chloromethane 106 Vinyl Chloride 92 1,3-Butadiene 90 Bromomethane 94 Chloroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichlorethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methylere Chloride 95 Methylere Chloride 96 Methylere Chloride 96 Methyletr-butyl ether 96 trans-1,2-Dichloroethene 93 1,2-Dichloroethene 93 1,2-Dichloroethene 91 1exane 93 Chloroform 93 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane	Compound	%Recovery
Chloromethane 106 Vinyl Chloride 92 1.3-Butadiene 90 Bromomethane 94 Chloroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 95 Chloroform 95 Chloroform 95 Chloroform 96 1,1,1-Trichloroethane 93 1,1,1-Trichloroethane 93 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 98 Benzene 86 Heptane 98 Trichlor	Freon 12	92
Vinyl Chloride 92 1,3-Butadiene 90 Bromomethane 94 Chloroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methylene Chloride 95 Methylene Chloride 95 Methylene Chloride 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 sis-1,2-Dichloroethane 91 Tetrahydrofuran 95 Chloroform 99 Tetrahydrofuran 95 Chloroform 99 Ly-Tirnelhoroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trime	Freon 114	90
1,3-Butadiene 90 Bromomethane 94 Choroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methylene Chloride 93 1,2-Dichloroethene 93 1,2-Dichloroethene 93 2-Butanone (Methyl Ethyl Ketone) 83 2-Butanone (Methyl Ethyl Ketone) 83 2-Butanone (Methyl Ethyl Ketone) 83 2-Butanone (Methyl Ethyl Ketone) 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92	Chloromethane	106
Bromomethane 94 Chloroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 89 Benzene 86 1,2-Dichloroethane 89 Heptane 78 Trichloroethane 90 cis-1,3-Dichloropropene 96 I,4-Bioxane 79 Bromodich	Vinyl Chloride	92
Chloroethane 94 Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 89 Benzene 86 1,2-Dichloroethane 89 Heptane 78 Trichloroethane 89 Heptane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96	1,3-Butadiene	90
Freon 11 90 Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethane 99 Brownodichloromethane 90 cis-1,3-Dichloropropene 96 Hewethyl-2-pentanone 96	Bromomethane	94
Ethanol 96 Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 98 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dic	Chloroethane	94
Freon 113 86 1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90	Freon 11	90
1,1-Dichloroethene 95 Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 96 Cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloroethane 94 <t< td=""><td>Ethanol</td><td>96</td></t<>	Ethanol	96
Acetone 86 2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 99 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Tollene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 94	Freon 113	86
2-Propanol 95 Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 84 <	1,1-Dichloroethene	95
Carbon Disulfide 91 3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 90 Toluene 90 trans-1,3-Dichloropropene 94 1,1,1,2-Trichloroethane 94 1,1,2-Trichloro	Acetone	86
3-Chloropropene 99 Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 96 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethane 84	2-Propanol	95
Methylene Chloride 95 Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 84 Tetrachloroethene 80	Carbon Disulfide	91
Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	3-Chloropropene	99
Methyl tert-butyl ether 96 trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 84	Methylene Chloride	95
trans-1,2-Dichloroethene 93 Hexane 105 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 96 Tolluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 84		96
1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80		93
2-Butanone (Methyl Ethyl Ketone) 83 cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Hexane	105
cis-1,2-Dichloroethene 91 Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	1,1-Dichloroethane	93
Tetrahydrofuran 95 Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	2-Butanone (Methyl Ethyl Ketone)	83
Chloroform 89 1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	cis-1,2-Dichloroethene	91
1,1,1-Trichloroethane 93 Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 1,2-Dichloroptopane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Tetrahydrofuran	95
Cyclohexane 94 Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Chloroform	89
Carbon Tetrachloride 92 2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	1,1,1-Trichloroethane	93
2,2,4-Trimethylpentane 99 Benzene 86 1,2-Dichloroethane 89 Heptane 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Cyclohexane	94
Benzene 86 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Carbon Tetrachloride	92
1,2-Dichloroethane 89 Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	2,2,4-Trimethylpentane	99
Heptane 98 Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Benzene	86
Trichloroethene 78 1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	1,2-Dichloroethane	89
1,2-Dichloropropane 89 1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Heptane	98
1,4-Dioxane 79 Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	Trichloroethene	78
Bromodichloromethane 90 cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	1,2-Dichloropropane	89
cis-1,3-Dichloropropene 96 4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	1,4-Dioxane	79
4-Methyl-2-pentanone95Toluene90trans-1,3-Dichloropropene941,1,2-Trichloroethane84Tetrachloroethene80	Bromodichloromethane	90
4-Methyl-2-pentanone 95 Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80	cis-1,3-Dichloropropene	96
Toluene 90 trans-1,3-Dichloropropene 94 1,1,2-Trichloroethane 84 Tetrachloroethene 80		95
1,1,2-Trichloroethane84Tetrachloroethene80		90
1,1,2-Trichloroethane84Tetrachloroethene80	trans-1,3-Dichloropropene	94
		84
2-Hexanone 82	Tetrachloroethene	80
	2-Hexanone	82

Client Sample ID: CCV Lab ID#: 1210378A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:01 AM

Compound		%Recovery
Dibromochloromethane	9 2.	86
1,2-Dibromoethane (EDB)		87
Chlorobenzene		86
Ethyl Benzene	. 63	94
m,p-Xylene		95
o-Xylene	. 60	97
Styrene		95
Bromoform		88
Cumene		94
1,1,2,2-Tetrachloroethane		85
Propylbenzene	CO OO	91
4-Ethyltoluene		92
1,3,5-Trimethylbenzene		87
1,2,4-Trimethylbenzene		92
1,3-Dichlorobenzene		86
1,4-Dichlorobenzene	76. 7	83
alpha-Chlorotoluene		108
1,2-Dichlorobenzene		85
1,2,4-Trichlorobenzene		78
Hexachlorobutadiene	, O. X	87
Naphthalene		72

Container Type: NA - Not Applicable

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCS Lab ID#: 1210378A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:31 AM

Freon 12 94 Freon 114 92 Chloromethane 109 Vinyl Chloride 98 1,3-Butadiene 92 Bromomethane 95 Chloroethane 98 Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methyl tert-butyle ether 88 trans-1,2-Dichloroethene 107 Hexane 107 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethane 92 2-Ettrahydrofuran 93 Norloforom 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroet	Compound	%Recovery
Chloromethane 109 Vinyl Chloride 98 1.3-Butadiene 92 Bromomethane 95 Chloroethane 98 Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 1,1-1-Trichloroethane 93 Chloroform 93 1,1-1-Trichloroethane 96 Carbon, Tetrachloride 95 2,2-4-Trimethylpentane 89 Benzene 88 Heptane 98 Trichloroethane 92 <t< td=""><td>Freon 12</td><td>94</td></t<>	Freon 12	94
Vinyl Chloride 98 1,3-Butadiene 92 Bromomethane 95 Chloroethane 98 Freon 11 92 Ethanol 66 C Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 99 Benzene 98 Trichloroethene 92 1,4-Diox	Freon 114	92
1,3-Butadiene 92 Bromomethane 95 Chloroethane 98 Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon, Tetrachloride 95 2,2,4-Trimethylpentane 89 Benzene 88 Trichloroethene 89 Heptane 92 Trichloroethene 92 Ly-Dichloropropane 102 4-Methyl-2-pentanone 90	Chloromethane	109
Bromomethane 95 Chloroethane 98 Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroptopane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone <td< td=""><td>Vinyl Chloride</td><td>98</td></td<>	Vinyl Chloride	98
Chloroethane 98 Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 1114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tertanydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 Heptane 98 Trichloroethane 92 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94	·	92
Freon 11 92 Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 89 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethane 92 1,4-Bioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 <tr< td=""><td>Bromomethane</td><td>95</td></tr<>	Bromomethane	95
Ethanol 66 Q Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 2-Ethanydrofuran 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 99 Heptane 99 Trichloroethane 92 1,2-Dichloropropane 92 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 90 1-Quiene 90	Chloroethane	98
Freon 113 90 1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 98 Benzene 88 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 99 Bromodichloromethane 90 Tolluene 91 trans-1,3-Dichloropropene 91 4,Methyl-2-pentanone 90	Freon 11	92
1,1-Dichloroethene 102 Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 90 Toluene 91 trans-1,3-Dichloropropene 90 Hothyl-2-pentanone 90 Toluene 98 Hetrachloro	Ethanol	66 Q
Acetone 88 2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 1114 Methyl tert-butyl ether 88 kethyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 99 Heptane 98 Trichloroethene 92 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 90 Ioluene 91 trans-1,3-Dichloropropene 98 I-trans-1,3-Dichloroethane	Freon 113	90
2-Propanol 98 Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85	1,1-Dichloroethene	102
Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 95 1,1,2-Trichlo	Acetone	88
Carbon Disulfide 116 3-Chloropropene 114 Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroet	2-Propanol	98
3-Chloropropene 114 Methyl en Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 98 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85		116
Methylene Chloride 96 Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Tirchloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Tirchloroethane 85 Tetrachloroethene 85		114
Methyl tert-butyl ether 88 trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 92 1,4-Dioxane 99 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 98 1,1,2-Trichloroethane 98 1,2-Tichloroethane 98		96
trans-1,2-Dichloroethene 107 Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85		88
Hexane 106 1,1-Dichloroethane 95 2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85		107
2-Butanone (Methyl Ethyl Ketone) 87 cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85		106
cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	1,1-Dichloroethane	95
cis-1,2-Dichloroethene 92 Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 85	2-Butanone (Methyl Ethyl Ketone)	87
Tetrahydrofuran 93 Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		92
Chloroform 93 1,1,1-Trichloroethane 97 Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		93
Cyclohexane 96 Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		93
Carbon Tetrachloride 95 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	1,1,1-Trichloroethane	97
2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	Cyclohexane	96
Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	Carbon Tetrachloride	95
Benzene 88 1,2-Dichloroethane 89 Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	2,2,4-Trimethylpentane	99
Heptane 98 Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		88
Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	1,2-Dichloroethane	89
Trichloroethene 82 1,2-Dichloropropane 92 1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	Heptane	98
1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		82
1,4-Dioxane 79 Bromodichloromethane 94 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	1,2-Dichloropropane	92
cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		79
4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	Bromodichloromethane	94
4-Methyl-2-pentanone 90 Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82	cis-1,3-Dichloropropene	102
Toluene 91 trans-1,3-Dichloropropene 98 1,1,2-Trichloroethane 85 Tetrachloroethene 82		90
1,1,2-Trichloroethane85Tetrachloroethene82		91
1,1,2-Trichloroethane85Tetrachloroethene82	trans-1,3-Dichloropropene	98
Tetrachloroethene 82		
		82

Client Sample ID: LCS Lab ID#: 1210378A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:31 AM

Compound		%Recovery
Dibromochloromethane	40	88
1,2-Dibromoethane (EDB)		90
Chlorobenzene		90
Ethyl Benzene		95
m,p-Xylene		99
o-Xylene	. 60	99
Styrene		97
Bromoform		89
Cumene		97
1,1,2,2-Tetrachloroethane		88
Propylbenzene		94
4-Ethyltoluene		89
1,3,5-Trimethylbenzene		88
1,2,4-Trimethylbenzene	0 ×	92
1,3-Dichlorobenzene		88
1,4-Dichlorobenzene	70.	84
alpha-Chlorotoluene		110
1,2-Dichlorobenzene		86
1,2,4-Trichlorobenzene		82
Hexachlorobutadiene	, O. X	87
Naphthalene		61

Q = Exceeds Quality Control limits.

Surrogates	%Recovery	Method Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCSD Lab ID#: 1210378A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:51 AM

Freon 12 92 Freon 114 91 Chloromethane 100 Vinyl Chloride 96 1,3-Butadiene 90 Bromomethane 94 Chloroethane 95 Freon 11 89 Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylere Chloride 94 Methylere Chloride 94 Methyler Erbulyle erber 87 trans-1,2-Dichloroethene 93 1,-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 95 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2-4-Trimethylpentane 99 <t< th=""><th>Compound</th><th>%Recovery</th></t<>	Compound	%Recovery
Chloromethane 100 Vinyl Chloride 96 1.3-Butadiene 90 Bromomethane 94 Chloroethane 95 Freon 11 89 Ethanol 64 Q Freon 113 87 1.1-Dichiorethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methylere-Dulyl ether 87 trans-1,2-Dichloroethene 93 1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon, Tetrachloride 94 2,2,4-Trimethylpentane 88 Benzene 81 Heptane 97 Trichloroethene 91 1,4-Dio	Freon 12	92
Vinyl Chloride 96 1,3-Butadiene 90 Bromomethane 94 Chloroethane 95 Freon 11 89 Ethanol 64 CQ Freon 113 87 1,1-Dichioroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 91 Tichloroethane 91 <td< td=""><td>Freon 114</td><td>91</td></td<>	Freon 114	91
1,3-Butadiene 90 Bromomethane 94 Chloroethane 95 Freon 11 89 Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon, Tetrachloride 94 2,2,4-Trimethylpentane 98 Benzene 88 Heptane 97 Trichloroethene 91 1,4-Dioxane 76 Bromodichloromethane 91 4-Methyl-2-pentanone 92	Chloromethane	100
Bromomethane 94 Chloroethane 95 Freon 11 89 Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 98 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Etrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cycloexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 91 Trichloroethene 91 1,4-Dioxane 76 Bromodichloromethane 92 Toluene 92 Toluene </td <td>Vinyl Chloride</td> <td>96</td>	Vinyl Chloride	96
Chioroethane 95 Freon 11 89 Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 1117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 Heptane 97 Trichloroethane 91 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 <t< td=""><td></td><td>90</td></t<>		90
Freon 11 89 Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 98 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Cyclohexane 94 2,2,4-Trimethylpentane 99 Benzene 88 Heptane 97 Trichloroethane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 Hexterne 92 Toluene </td <td>Bromomethane</td> <td>94</td>	Bromomethane	94
Ethanol 64 Q Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chioropropene 117 Methylene Choride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 tertanydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 91 1,4-Dioxane 76 Bromodichloromethane 91 1,4-Dioxane 96 Bromodichloromethane 92 Toluene 93 Tetrachloroethane 96	Chloroethane	95
Freon 113 87 1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 Carbon Tetrachloride 94 Carbon Tetrachloride 98 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 91 1,2-Dichloropropane 91 4,-Pioxane 96 Bromodichloromethane 91 Cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone	Freon 11	89
1,1-Dichloroethene 99 Acetone 86 2-Propanol 96 Carbon Disulfide 1114 3-Chloropropene 1117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 92 Toluene 91 trans-1,3-Dichloropropene 94 -Methyl-2-pentanone 96 -Methyl-2-pentanone 96 <t< td=""><td>Ethanol</td><td>64 Q</td></t<>	Ethanol	64 Q
Acetone 86 2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 99 Benzene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene	Freon 113	87
2-Propanol 96 Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	1,1-Dichloroethene	99
Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroetha	Acetone	86
Carbon Disulfide 114 3-Chloropropene 117 Methylene Chloride 94 Methyl terb-t-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	2-Propanol	96
3-Chloropropene 117 Methyl en Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 85		114
Methylene Chloride 94 Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Tirchloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		117
Methyl tert-butyl ether 87 trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		94
trans-1,2-Dichloroethene 105 Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		87
Hexane 98 1,1-Dichloroethane 93 2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichlorothane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		105
2-Butanone (Methyl Ethyl Ketone) 84 cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		98
cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	1,1-Dichloroethane	93
cis-1,2-Dichloroethene 92 Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	2-Butanone (Methyl Ethyl Ketone)	84
Tetrahydrofuran 90 Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		92
Chloroform 91 1,1,1-Trichloroethane 95 Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		90
Cyclohexane 94 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		91
Carbon Tetrachloride 94 2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	1,1,1-Trichloroethane	95
2,2,4-Trimethylpentane 99 Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	Cyclohexane	94
Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	Carbon Tetrachloride	94
Benzene 88 1,2-Dichloroethane 88 Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	2,2,4-Trimethylpentane	99
Heptane 97 Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		88
Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	1,2-Dichloroethane	88
Trichloroethene 81 1,2-Dichloropropane 91 1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	Heptane	97
1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		81
1,4-Dioxane 76 Bromodichloromethane 91 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	1,2-Dichloropropane	91
cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		76
4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	Bromodichloromethane	91
4-Methyl-2-pentanone 92 Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81	cis-1,3-Dichloropropene	98
Toluene 91 trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		92
trans-1,3-Dichloropropene 96 1,1,2-Trichloroethane 85 Tetrachloroethene 81		91
1,1,2-Trichloroethane85Tetrachloroethene81		96
Tetrachloroethene 81		
	2-Hexanone	80

Client Sample ID: LCSD Lab ID#: 1210378A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p102404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/24/12 09:51 AM

Compound		%Recovery
Dibromochloromethane	(V)	86
1,2-Dibromoethane (EDB)		90
Chlorobenzene		89
Ethyl Benzene		95
m,p-Xylene		97
o-Xylene	. 60	98
Styrene		96
Bromoform	()	87
Cumene		97
1,1,2,2-Tetrachloroethane		88
Propylbenzene		94
4-Ethyltoluene	.(0	91
1,3,5-Trimethylbenzene		89
1,2,4-Trimethylbenzene	0 ×	93
1,3-Dichlorobenzene		89
1,4-Dichlorobenzene	00.	85
alpha-Chlorotoluene		108
1,2-Dichlorobenzene		88
1,2,4-Trichlorobenzene		85
Hexachlorobutadiene	0. 4	90
Naphthalene		61

Q = Exceeds Quality Control limits.

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	101	70-130

APPENDIX B
December 2012 MW14CP Borehole Log

PROJECT: Kwikleen

REPORT OF BOREHOLE: MW14CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 5/12/12 087673045 CHECKED: CC DATE: 8/4/13 JOB NO: HOLE DEPTH: 4.50 m

			5 HOLE DEPTH: 4.50 m CHECKED: CC DATE: 8/4/13									
	rilling	_	Sampling	\top		٦	Field Material Descri					
PENETRATION RESISTANCE WATER	DEPTH	(gangarana) DEP RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PlEZO	OMETER	R DETAILS
	0.0	0.1	5_		15.77 15.77 15.78 15.78		TOPSOIL: Silty SAND fine to coarse grained, brown, some fine to medium gravels, dry, medium dense	D	MD			Gattic Cover Concrete
		0.4)		200		Silty Sandy GRAVEL fine to coarse, angular, pale grey gravels, yellow red sand/silty, dry, medium dense	D	MD			— Bentonite
	0.5	_					SAND fine to coarse grained, pale grey, dry, loose	<	2		4	— Sand
							S	D				— Blank
	1.0	-					· SCIO					
	1.5	1.5					becoming dry to moist		١.			
							esolice 200s		L			
	2.0	_					es ci.	D- M				
						8					-	— Sand
	2.5	2.5					becoming wet					
			1280					w				
	3.0	3.1	, (6)		• •		Sandy CLAY					
					• • •		high plasticity, dark brown, fine sands, moist, soft	М				
	3.5	3.5	0			7	becoming wet		s			— Slotted
		3.9)					w				
	4.0	-			 		CLAY high plasticity, grey, dark brown, some coarse sands, moist to wet, soft	M - W	s			
		4.3	0		[- <u>-</u>		CLAY high plasticity, mottled brown/grey, moist, firm	м	F			
-	4.5	-		+			END OF BOREHOLE @ 4.50 m	"	<u> </u>			
		-										
	5.0											

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/E	XCAVATION METHOD				
AS*	Auger Screwing	RD	Rotary blade or drag bit	NQ	Diamond Core - 47 mm
AD*	Auger Drilling	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
*V	V-Bit	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
*T	TC-Bit, e.g. ADT	RC	Reverse Circulation	HMLC	Diamond Core – 63mm
HA	Hand Auger	PT	Push Tube	BH	Tractor Mounted Backhoe
ADH	Hollow Auger	CT	Cable Tool Rig	EX	Tracked Hydraulic Excavator
DTC	Diatube Coring	JET	Jetting	EE	Existing Excavation
WB	Washbore or Bailer	NDD	Non-destructive digging	HAND	Excavated by Hand Methods

PENETRATION/EXCAVATION RESISTANCE

- Low resistance. Rapid penetration possible with little effort from the equipment used.
- Medium resistance. Excavation/possible at an acceptable rate with moderate effort from the equipment used.
- **H High resistance** to penetration/excavation. Further penetration is possible at a slow rate and requires significant effort from the equipment.
- R Refusal or Practical Refusal. No further progress possible without the risk of damage or unacceptable wear to the digging implement or machine.

These assessments are subjective and are dependent on many factors including the equipment power, weight, condition of excavation or drilling tools, and the experience of the operator.

1 A /	A 7	_	_
vv	ΑI	E	к

✓ Water level at date shown✓ Partial water loss✓ Complete water loss

GROUNDWATER NOT The observation of groundwater, whether present or not, was not possible due to drilling water,

OBSERVED surface seepage or cave in of the borehole/test pit.

GROUNDWATER NOT

The borehole/test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open

for a longer period.

SAMPLING AND TESTING

SPT Standard Penetration Test to AS1289.6.3.1-2004

4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following 150mm seating 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported

RW Penetration occurred under the rod weight only

HW Penetration occurred under the hammer and rod weight only

HB Hammer double bouncing on anvil

DS Disturbed sample
BDS Bulk disturbed sample

G Gas Sample W Water Sample

FP Field permeability test over section noted

FV Field vane shear test expressed as uncorrected shear strength (s_v = peak value, s_r = residual value)

PID Photoionisation Detector reading in ppm
PM Pressuremeter test over section noted

PP Pocket penetrometer test expressed as instrument reading in kPa

U63 Thin walled tube sample - number indicates nominal sample diameter in millimetres

WPT Water pressure tests

DCP Dynamic cone penetration test
CPT Static cone penetration test

CPTu Static cone penetration test with pore pressure (u) measurement

Ranking of Visuall	Ranking of Visually Observable Contamination and Odour (for specific soil contamination assessment projects)									
R = 0	No visible evidence of contamination	R = A	No non-natural odours identified	1						
R = 1	Slight evidence of visible contamination	R = B	Slight non-natural odours identified							
R = 2	Visible contamination	R = C	Moderate non-natural odours identified							
R = 3	Significant visible contamination	R = D	Strong non-natural odours identified							

ROCK CORE RECOVERY

TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) RQD = Rock Quality Designation (%)

 $= \frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100 \qquad \qquad = \frac{\sum \text{Length of cylindrical core recovered}}{\text{Length of core run}} \times 100 \qquad \qquad = \frac{\sum \text{Axial lengths of core } > 100 \text{ mm}}{\text{Length of core run}} \times 100$

METHOD OF SOIL DESCRIPTION USED ON BOREHOLE AND TEST PIT REPORTS

00

FILL

GRAVEL (GP or GW)

SAND (SP or SW)

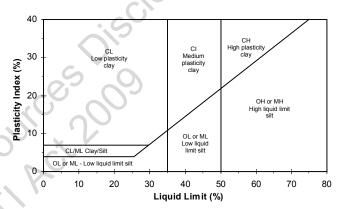
SILT (ML or MH)

CLAY (CL, Cl or CH)

ORGANIC SOILS (OL or OH or Pt)

COBBLES or BOULDERS

Combinations of these basic symbols may be used to indicate mixed materials such as sandy clay.


CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil and Rock is classified and described in Reports of Boreholes and Test Pits using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. The material properties are assessed in the field by visual/tactile methods.

Particle Size

Major Divi	sion	Sub Division	Particle Size
Е	OULE	ERS	> 200 mm
	СОВВ	LES	63 to 200 mm
		Coarse	20 to 63 mm
GRAVEL		Medium	6.0 to 20 mm
		Fine	2.0 to 6.0 mm
		Coarse	0.6 to 2.0 mm
SAND		Medium	0.2 to 0.6 mm
		Fine	0.075 to 0.2 mm
	SIL	Т	0.002 to 0.075 mm
	CLA	·Υ	< 0.002 mm

Plasticity Properties

MOISTURE CONDITION

CONSISTENCY AND DENSITY

Hard

AS1726 - 1993

		7101120 1000
Symbol	Term	Description
D	Dry	Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.
M	Moist	Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

Symbol	Term	Undrained Shear Strength
VS	Very Soft	0 to 12 kPa
S	Soft	12 to 25 kPa
F	Firm	25 to 50 kPa
St	Stiff	50 to 100 kPa
VSt	Very Stiff	100 to 200 kPa

Above 200 kPa

	AS172	6 - 1993
$\overline{}$		

Symbol	Term	Density Index %	SPT "N" #
VL	Very Loose	Less than 15	0 to 4
L	Loose	15 to 35	4 to 10
MD	Medium Dense	35 to 65	10 to 30
D	Dense	65 to 85	30 to 50
VD	Very Dense	Above 85	Above 50

In the absence of test results, consistency and density may be assessed from correlations with the observed behaviour of the material.

SPT correlations are not stated in AS1726 – 1993, and may be subject to corrections for overburden pressure and equipment type.

APPENDIX C

Pulhlished on Refill Act December 2012 MW14CP & SVW08-SVW12 **Laboratory Test Certificates**

12/22/2012

sch4p4(6) Personal inforn

Golder Associates, Australia 216 Draper Street

Cairns, Queensland 4870

Project Name: Kwikleen Project #: 087673045 Workorder #: 1212384A

Dear sch4p4(6) Personal ir

The following report includes the data for the above referenced project for sample(s) received on 12/17/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal information if you have any questions regarding the data in this report.

Regards,

sch4p4(6) Personal information

sch4p4(6) Personal info

Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-985-1020 www.airtoxics.com

Page 1 of 31

WORK ORDER #: 1212384A

Work Order Summary

CLIENT: Sch4p4(6) Personal int BILL TO: Accounts Payable

Golder Associates, Australia Golder Associates, Australia

216 Draper Street PO BOX 6079

Cairns, Queensland 4870 Hawthorne, Australia 3121

PHONE: +61 7 4054 8200 P.O. # CO3286

FAX: +61 7 4054 8201 PROJECT # 087673045 Kwikleen

DATE RECEIVED: 12/17/2012 **CONTACT:** sch4p4(6) Persona **DATE COMPLETED:** 12/22/2012

		10	RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVW13	Modified TO-15	9.5 "Hg	15 psi
02A	SVW14	Modified TO-15	11.0 "Hg	15 psi
03A	SVW15	Modified TO-15	9.5 "Hg	15 psi
04A	REP001	Modified TO-15	9.0 "Hg	15 psi
05A	FB001	Modified TO-15	9.5 "Hg	15 psi
06A	Lab Blank	Modified TO-15	NA	NA
06B	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
07B	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08AA	LCSD	Modified TO-15	NA	NA
08B	LCS	Modified TO-15	NA	NA
08BB	LCSD	Modified TO-15	NA	NA
	olished			

certified By:

DATE: 12/22/12

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

lac-MRA

Page 2 of 31

LABORATORY NARRATIVE EPA Method TO-15 Golder Associates, Australia Workorder# 1212384A

Five 1 Liter Summa Canister samples were received on December 17, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Due to the linear calibration range of the instrument, the reporting limit for 1,2,4-Trichlorobenzene was raised from 2.0 ppbv to 5.0 ppbv.

Dilution was performed on samples SVW13, SVW14, SVW15, and REP001 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW13 Lab ID#: 1212384A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	7.4	14	29	54
cis-1,2-Dichloroethene	7.4	230	29	930
Trichloroethene	7.4	1500	40	8100
Tetrachloroethene	7.4	2200	50	15000

Client Sample ID: SVW14 Lab ID#: 1212384A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
cis-1,2-Dichloroethene	8.0	180	32	700	_
Trichloroethene	8.0	2600	43	14000	
Tetrachloroethene	8.0	2500	54	17000	

Client Sample ID: SVW15

Lab ID#: 1212384A-03A

CO.	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
cis-1,2-Dichloroethene	5.9	41	23	160	
Chloroform	5.9	14	29	71	
Trichloroethene	5.9	750	32	4000	
Tetrachloroethene	5.9	1800	40	12000	

Client Sample ID: REP001

Lab ID#: 1212384A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	5.8	42	23	170
Chloroform	5.8	14	28	69
Trichloroethene	5.8	700	31	3800
Toluene	5.8	9.7	22	37
Tetrachloroethene	5.8	1700	39	11000

Summary of Detected Compounds Published on Resources Dischosure Loss Published on Resources Dischosure Dischosu **EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: FB001 Lab ID#: 1212384A-05A No Detections Were Found.

Client Sample ID: SVW13 Lab ID#: 1212384A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122108 14.8		of Collection: 12/ of Analysis: 12/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	7.4	Not Detected	36	Not Detected
Freon 114	7.4	Not Detected	52	Not Detected
Chloromethane	74	Not Detected	150	Not Detected
Vinyl Chloride	7.4	Not Detected	19	Not Detected
1,3-Butadiene	7.4	Not Detected	16	Not Detected
Bromomethane	74	Not Detected	290	Not Detected
Chloroethane	30	Not Detected	78	Not Detected
Freon 11	7.4	Not Detected	42	Not Detected
Ethanol	30	Not Detected	56	Not Detected
Freon 113	7.4	Not Detected	57	Not Detected
1,1-Dichloroethene	7.4	Not Detected	29	Not Detecte
Acetone	74	Not Detected	180	Not Detecte
2-Propanol	30	Not Detected	73	Not Detecte
Carbon Disulfide	30	Not Detected	92	Not Detecte
3-Chloropropene	30	Not Detected	93	Not Detecte
Methylene Chloride	74	Not Detected	260	Not Detecte
Methyl tert-butyl ether	7.4	Not Detected	27	Not Detecte
rans-1,2-Dichloroethene	7.4	14	29	54
Hexane	7.4	Not Detected	26	Not Detecte
1,1-Dichloroethane	7.4	Not Detected	30	Not Detecte
2-Butanone (Methyl Ethyl Ketone)	30	Not Detected	87	Not Detecte
cis-1,2-Dichloroethene	7.4	230	29	930
Tetrahydrofuran	7.4	Not Detected	22	Not Detecte
Chloroform	7.4	Not Detected	36	Not Detecte
1,1,1-Trichloroethane	7.4	Not Detected	40	Not Detecte
Cyclohexane	7.4	Not Detected	25	Not Detecte
Carbon Tetrachloride	7.4	Not Detected	46	Not Detecte
2,2,4-Trimethylpentane	7.4	Not Detected	34	Not Detecte
Benzene	7.4	Not Detected	24	Not Detecte
1,2-Dichloroethane	7.4	Not Detected	30	Not Detecte
Heptane	7.4	Not Detected	30	Not Detecte
Trichloroethene	7.4	1500	40	8100
1,2-Dichloropropane	7.4	Not Detected	34	Not Detecte
1,4-Dioxane	30	Not Detected	110	Not Detecte
Bromodichloromethane	7.4	Not Detected	50	Not Detecte
cis-1,3-Dichloropropene	7.4	Not Detected	34	Not Detecte
4-Methyl-2-pentanone	7.4	Not Detected	30	Not Detected
Foluene	7.4	Not Detected	28	Not Detected
rans-1,3-Dichloropropene	7.4	Not Detected	34	Not Detected
1,1,2-Trichloroethane	7.4	Not Detected	40	Not Detected
Tetrachloroethene	7.4	2200	50	15000
2-Hexanone	30	Not Detected	120	Not Detected

Client Sample ID: SVW13 Lab ID#: 1212384A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122108 14.8	Date of Collection: 12/14/12 8:10:00 AM Date of Analysis: 12/21/12 09:10 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	7.4	Not Detected	63	Not Detected
1,2-Dibromoethane (EDB)	7.4	Not Detected	57	Not Detected
Chlorobenzene	7.4	Not Detected	34	Not Detected
Ethyl Benzene	7.4	Not Detected	32	Not Detected
m,p-Xylene	7.4	Not Detected	32	Not Detected
o-Xylene	7.4	Not Detected	32	Not Detected
Styrene	7.4	Not Detected	32	Not Detected
Bromoform	7.4	Not Detected	76	Not Detected
Cumene	7.4	Not Detected	36	Not Detected
1,1,2,2-Tetrachloroethane	7.4	Not Detected	51	Not Detected
Propylbenzene	7.4	Not Detected	36	Not Detected
4-Ethyltoluene	7.4	Not Detected	36	Not Detected
1,3,5-Trimethylbenzene	7.4	Not Detected	36	Not Detected
1,2,4-Trimethylbenzene	7.4	Not Detected	36	Not Detected
1,3-Dichlorobenzene	7.4	Not Detected	44	Not Detected
1,4-Dichlorobenzene	7.4	Not Detected	44	Not Detected
alpha-Chlorotoluene	7.4	Not Detected	38	Not Detected
1,2-Dichlorobenzene	7.4	Not Detected	44	Not Detected
1,2,4-Trichlorobenzene	74	Not Detected	550	Not Detected
Hexachlorobutadiene	30	Not Detected	320	Not Detected

Container Type: 1 Liter Summa Canister

Container Type: 1 Eller Callina Callicter		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SVW14 Lab ID#: 1212384A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122109 16.0		of Collection: 12/14 of Analysis: 12/21/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	8.0	Not Detected	40	Not Detected
Freon 114	8.0	Not Detected	56	Not Detected
Chloromethane	80	Not Detected	160	Not Detected
√inyl Chloride	8.0	Not Detected	20	Not Detected
1,3-Butadiene	8.0	Not Detected	18	Not Detected
Bromomethane	80	Not Detected	310	Not Detected
Chloroethane	32	Not Detected	84	Not Detected
Freon 11	8.0	Not Detected	45	Not Detected
Ethanol	32	Not Detected	60	Not Detected
Freon 113	8.0	Not Detected	61	Not Detected
1,1-Dichloroethene	8.0	Not Detected	32	Not Detected
Acetone	80	Not Detected	190	Not Detected
2-Propanol	32	Not Detected	79	Not Detected
Carbon Disulfide	32	Not Detected	100	Not Detected
3-Chloropropene	32	Not Detected	100	Not Detected
Methylene Chloride	80	Not Detected	280	Not Detected
Methyl tert-butyl ether	8.0	Not Detected	29	Not Detected
rans-1,2-Dichloroethene	8.0	Not Detected	32	Not Detected
Hexane	8.0	Not Detected	28	Not Detected
1,1-Dichloroethane	8.0	Not Detected	32	Not Detected
2-Butanone (Methyl Ethyl Ketone)	32	Not Detected	94	Not Detected
cis-1,2-Dichloroethene	8.0	180	32	700
Tetrahydrofuran	8.0	Not Detected	24	Not Detected
Chloroform	8.0	Not Detected	39	Not Detected
1,1,1-Trichloroethane	8.0	Not Detected	44	Not Detected
Cyclohexane	8.0	Not Detected	28	Not Detected
Carbon Tetrachloride	8.0	Not Detected	50	Not Detected
2,2,4-Trimethylpentane	8.0	Not Detected	37	Not Detected
Benzene	8.0	Not Detected	26	Not Detected
1,2-Dichloroethane	8.0	Not Detected	32	Not Detected
Heptane	8.0	Not Detected	33	Not Detected
Trichloroethene	8.0	2600	43	14000
1,2-Dichloropropane	8.0	Not Detected	37	Not Detected
1,4-Dioxane	32	Not Detected	120	Not Detected
Bromodichloromethane	8.0	Not Detected	54	Not Detected
cis-1,3-Dichloropropene	8.0	Not Detected	36	Not Detected
4-Methyl-2-pentanone	8.0	Not Detected	33	Not Detected
Toluene	8.0	Not Detected	30	Not Detected
rolderie :rans-1,3-Dichloropropene	8.0	Not Detected	36	Not Detected
1,1,2-Trichloroethane	8.0	Not Detected	44	Not Detected
Tetrachloroethene	8.0	2500	54	17000
2-Hexanone	32	2000	130	17000

Client Sample ID: SVW14 Lab ID#: 1212384A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122109 16.0	Date of Collection: 12/14/12 8:40:00 AM Date of Analysis: 12/21/12 09:52 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	8.0	Not Detected	68	Not Detected
1,2-Dibromoethane (EDB)	8.0	Not Detected	61	Not Detected
Chlorobenzene	8.0	Not Detected	37	Not Detected
Ethyl Benzene	8.0	Not Detected	35	Not Detected
m,p-Xylene	8.0	Not Detected	35	Not Detected
o-Xylene	8.0	Not Detected	35	Not Detected
Styrene	8.0	Not Detected	34	Not Detected
Bromoform	8.0	Not Detected	83	Not Detected
Cumene	8.0	Not Detected	39	Not Detected
1,1,2,2-Tetrachloroethane	8.0	Not Detected	55	Not Detected
Propylbenzene	8.0	Not Detected	39	Not Detected
4-Ethyltoluene	8.0	Not Detected	39	Not Detected
1,3,5-Trimethylbenzene	8.0	Not Detected	39	Not Detected
1,2,4-Trimethylbenzene	8.0	Not Detected	39	Not Detected
1,3-Dichlorobenzene	8.0	Not Detected	48	Not Detected
1,4-Dichlorobenzene	8.0	Not Detected	48	Not Detected
alpha-Chlorotoluene	8.0	Not Detected	41	Not Detected
1,2-Dichlorobenzene	8.0	Not Detected	48	Not Detected
1,2,4-Trichlorobenzene	80	Not Detected	590	Not Detected
Hexachlorobutadiene	32	Not Detected	340	Not Detected

Container Type: 1 Liter Summa Canister

Container Type: 1 Ener Camina Cameter		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SVW15 Lab ID#: 1212384A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122110 11.8		of Collection: 12/14 of Analysis: 12/21/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.9	Not Detected	29	Not Detected
Freon 114	5.9	Not Detected	41	Not Detected
Chloromethane	59	Not Detected	120	Not Detected
Vinyl Chloride	5.9	Not Detected	15	Not Detected
1,3-Butadiene	5.9	Not Detected	13	Not Detected
Bromomethane	59	Not Detected	230	Not Detected
Chloroethane	24	Not Detected	62	Not Detected
Freon 11	5.9	Not Detected	33	Not Detected
Ethanol	24	Not Detected	44	Not Detected
Freon 113	5.9	Not Detected	45	Not Detected
1,1-Dichloroethene	5.9	Not Detected	23	Not Detected
Acetone	59	Not Detected	140	Not Detected
2-Propanol	24	Not Detected	58	Not Detected
Carbon Disulfide	24	Not Detected	73	Not Detected
3-Chloropropene	24	Not Detected	74	Not Detected
Methylene Chloride	59	Not Detected	200	Not Detected
Methyl tert-butyl ether	5.9	Not Detected	21	Not Detected
rans-1,2-Dichloroethene	5.9	Not Detected	23	Not Detected
Hexane	5.9	Not Detected	21	Not Detected
1,1-Dichloroethane	5.9	Not Detected	24	Not Detected
2-Butanone (Methyl Ethyl Ketone)	24	Not Detected	70	Not Detected
cis-1,2-Dichloroethene	5.9	41	23	160
Tetrahydrofuran	5.9	Not Detected	17	Not Detected
Chloroform	5.9	14	29	71
1,1,1-Trichloroethane	5.9	Not Detected	32	Not Detected
Cyclohexane	5.9	Not Detected	20	Not Detected
Carbon Tetrachloride	5.9	Not Detected	37	Not Detected
2,2,4-Trimethylpentane	5.9	Not Detected	28	Not Detected
Benzene	5.9	Not Detected	19	Not Detected
1,2-Dichloroethane	5.9	Not Detected	24	Not Detected
Heptane	5.9	Not Detected	24	Not Detected
Trichloroethene	5.9	750	32	4000
1,2-Dichloropropane	5.9	Not Detected	27	Not Detected
1,4-Dioxane	24	Not Detected	85	Not Detected
Bromodichloromethane	5.9	Not Detected	40	Not Detected
cis-1,3-Dichloropropene	5.9	Not Detected	27	Not Detected
4-Methyl-2-pentanone	5.9	Not Detected	24	Not Detected
Foluene	5.9	Not Detected	22	Not Detected
rans-1,3-Dichloropropene	5.9	Not Detected	27	Not Detected
1,1,2-Trichloroethane	5.9	Not Detected	32	Not Detected
Tetrachloroethene	5.9	1800	40	12000
1 C	J.3	1000	T∪	12000

Client Sample ID: SVW15 Lab ID#: 1212384A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122110 11.8		e of Collection: 12/1 e of Analysis: 12/21/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.9	Not Detected	50	Not Detected
1,2-Dibromoethane (EDB)	5.9	Not Detected	45	Not Detected
Chlorobenzene	5.9	Not Detected	27	Not Detected

Chlorobenzene		5.9	Not Detected	27	Not Detected
Ethyl Benzene	;	5.9	Not Detected	26	Not Detected
m,p-Xylene		5.9	Not Detected	26	Not Detected
o-Xylene		5.9	Not Detected	26	Not Detected
Styrene		5.9	Not Detected	25	Not Detected
Bromoform		5.9	Not Detected	61	Not Detected
Cumene		5.9	Not Detected	29	Not Detected
1,1,2,2-Tetrachloroethane		5.9	Not Detected	40	Not Detected
Propylbenzene	;	5.9	Not Detected	29	Not Detected
4-Ethyltoluene		5.9	Not Detected	29	Not Detected
1,3,5-Trimethylbenzene		5.9	Not Detected	29	Not Detected
1,2,4-Trimethylbenzene		5.9	Not Detected	29	Not Detected
1,3-Dichlorobenzene		5.9	Not Detected	35	Not Detected
1,4-Dichlorobenzene	7	5.9	Not Detected	35	Not Detected
alpha-Chlorotoluene		5.9	Not Detected	30	Not Detected
1,2-Dichlorobenzene		5.9	Not Detected	35	Not Detected
1,2,4-Trichlorobenzene		59	Not Detected	440	Not Detected
Hexachlorobutadiene	. 0	24	Not Detected	250	Not Detected

Container Type: 1 Liter Summa Canister

Sometime Type: 1 Enter Semina Seminator		Method
Surrogates	%Recovery	Limits
Toluene-d8	110	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: REP001 Lab ID#: 1212384A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122018 Date of Collection: 12/14/12 9:5 Dil. Factor: 11.6 Date of Analysis: 12/21/12 12:4				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.8	Not Detected	29	Not Detected
Freon 114	5.8	Not Detected	40	Not Detected
Chloromethane	58	Not Detected	120	Not Detected
Vinyl Chloride	5.8	Not Detected	15	Not Detected
1,3-Butadiene	5.8	Not Detected	13	Not Detected
Bromomethane	58	Not Detected	220	Not Detected
Chloroethane	23	Not Detected	61	Not Detected
Freon 11	5.8	Not Detected	32	Not Detected
Ethanol	23	Not Detected	44	Not Detected
Freon 113	5.8	Not Detected	44	Not Detected
1,1-Dichloroethene	5.8	Not Detected	23	Not Detected
Acetone	58	Not Detected	140	Not Detected
2-Propanol	23	Not Detected	57	Not Detected
Carbon Disulfide	23	Not Detected	72	Not Detected
3-Chloropropene	23	Not Detected	73	Not Detected
Methylene Chloride	58	Not Detected	200	Not Detected
Methyl tert-butyl ether	5.8	Not Detected	21	Not Detected
trans-1,2-Dichloroethene	5.8	Not Detected	23	Not Detected
Hexane	5.8	Not Detected	20	Not Detected
1,1-Dichloroethane	5.8	Not Detected	23	Not Detected
2-Butanone (Methyl Ethyl Ketone)	23	Not Detected	68	Not Detected
cis-1,2-Dichloroethene	5.8	42	23	170
Tetrahydrofuran	5.8	Not Detected	17	Not Detected
Chloroform	5.8	14	28	69
1,1,1-Trichloroethane	5.8	Not Detected	32	Not Detected
Cyclohexane	5.8	Not Detected	20	Not Detected
Carbon Tetrachloride	5.8	Not Detected	36	Not Detected
2,2,4-Trimethylpentane	5.8	Not Detected	27	Not Detected
Benzene	5.8	Not Detected	18	Not Detected
1,2-Dichloroethane	5.8	Not Detected	23	Not Detected
Heptane	5.8	Not Detected	24	Not Detected
Trichloroethene	5.8	700	31	3800
1,2-Dichloropropane	5.8	Not Detected	27	Not Detected
1,4-Dioxane	23	Not Detected	84	Not Detected
Bromodichloromethane	5.8	Not Detected	39	Not Detected
cis-1,3-Dichloropropene	5.8	Not Detected	26	Not Detected
4-Methyl-2-pentanone	5.8	Not Detected	24	Not Detected
4-Metryl-2-peritatione Toluene	5.8	9.7	22	37
trans-1,3-Dichloropropene	5.8	Not Detected	26	Not Detected
1,1,2-Trichloroethane	5.8	Not Detected Not Detected	32	Not Detected
		1700		11000
Tetrachloroethene	5.8		39 05	
2-Hexanone	23	Not Detected	95	Not Detected

Client Sample ID: REP001 Lab ID#: 1212384A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122018 11.6		e of Collection: 12/14/ e of Analysis: 12/21/12	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.8	Not Detected	49	Not Detected
1,2-Dibromoethane (EDB)	5.8	Not Detected	44	Not Detected
Chlorobenzene	5.8	Not Detected	27	Not Detected
Ethyl Benzene	5.8	Not Detected	25	Not Detected
m,p-Xylene	5.8	Not Detected	25	Not Detected
o-Xylene	5.8	Not Detected	25	Not Detected
Styrene	5.8	Not Detected	25	Not Detected
Bromoform	5.8	Not Detected	60	Not Detected
Cumene	5.8	Not Detected	28	Not Detected
1,1,2,2-Tetrachloroethane	5.8	Not Detected	40	Not Detected
Propylbenzene	5.8	Not Detected	28	Not Detected
4-Ethyltoluene	5.8	Not Detected	28	Not Detected
1,3,5-Trimethylbenzene	5.8	Not Detected	28	Not Detected
1,2,4-Trimethylbenzene	5.8	Not Detected	28	Not Detected
1,3-Dichlorobenzene	5.8	Not Detected	35	Not Detected
1,4-Dichlorobenzene	5.8	Not Detected	35	Not Detected
alpha-Chlorotoluene	5.8	Not Detected	30	Not Detected
1,2-Dichlorobenzene	5.8	Not Detected	35	Not Detected
1,2,4-Trichlorobenzene	58	Not Detected	430	Not Detected
Hexachlorobutadiene	23	Not Detected	250	Not Detected

Container Type: 1 Liter Summa Canister

Container Type: 1 Ener Camma Cameter		Method
Surrogates	%Recovery	Limits
Toluene-d8	110	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: FB001 Lab ID#: 1212384A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122019 2.96		of Collection: 12/1 of Analysis: 12/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	Not Detected	7.3	Not Detected
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	30	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	57	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.3	Not Detected
Ethanol	5.9	Not Detected	11	Not Detected
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	Not Detected	35	Not Detected
2-Propanol	5.9	Not Detected	14	Not Detected
Carbon Disulfide	5.9	Not Detected	18	Not Detected
3-Chloropropene	5.9	Not Detected	18	Not Detected
Methylene Chloride	15	Not Detected	51	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	Not Detected	5.2	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.9	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.4	Not Detected
Chloroform	1.5	Not Detected	7.2	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	Not Detected	5.1	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected
2,2,4-Trimethylpentane	1.5	Not Detected	6.9	Not Detected
Benzene	1.5	Not Detected	4.7	Not Detected
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromodichloromethane	1.5	Not Detected	9.9	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.1	Not Detected
Toluene	1.5	Not Detected	5.6	Not Detected
trans-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	5.9	Not Detected	24	Not Detected

Client Sample ID: FB001 Lab ID#: 1212384A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122019 2.96		of Collection: 12/14/ of Analysis: 12/21/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	Not Detected	6.8	Not Detected
Ethyl Benzene	1.5	Not Detected	6.4	Not Detected
m,p-Xylene	1.5	Not Detected	6.4	Not Detected
o-Xylene	1.5	Not Detected	6.4	Not Detected
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	Not Detected	7.3	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.3	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.3	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,4-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,2,4-Trichlorobenzene	15	Not Detected	110	Not Detected
Hexachlorobutadiene	5.9	Not Detected	63	Not Detected

Container Type: 1 Liter Summa Canister

Container Type: 1 Enter Cumina Cumeter		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: Lab Blank Lab ID#: 1212384A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122005 1.00	Date of Collection: NA Date of Analysis: 12/20/12 06:45 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1212384A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122005 1.00	Date of Collection: NA Date of Analysis: 12/20/12 06:45 PM		2 06:45 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Containor Type: NA NotApplicable		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1212384A-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122107 1.00	Date of Collection: NA Date of Analysis: 12/21/12 08:18 PM		/12 08:18 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
B-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
rans-1.2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Frichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Foluene	0.50	Not Detected	1.9	Not Detected
rans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1212384A-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2122107 Date of Collection: NA 1.00 Date of Analysis: 12/21/12 08:18 PM		2 08:18 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Containor Type: NA NotApplicable		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: CCV Lab ID#: 1212384A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122002
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/20/12 03:06 PM

Compound	%Recovery
Freon 12	106
Freon 114	106
Chloromethane	116
Vinyl Chloride	102
1,3-Butadiene	96
Bromomethane	127
Chloroethane	113
Freon 11	93
Ethanol	121
Freon 113	91
1,1-Dichloroethene	84
Acetone	104
2-Propanol	89
Carbon Disulfide	93
3-Chloropropene	94
Methylene Chloride	98
Methyl tert-butyl ether	85
trans-1,2-Dichloroethene	90
Hexane	89
1,1-Dichloroethane	88
2-Butanone (Methyl Ethyl Ketone)	100
cis-1,2-Dichloroethene	91
Tetrahydrofuran	89
Chloroform	94
1,1,1-Trichloroethane	96
Cyclohexane	93
Carbon Tetrachloride	101
2,2,4-Trimethylpentane	92
Benzene	89
1,2-Dichloroethane	95
Heptane	95
Trichloroethene	97
1,2-Dichloropropane	91
1,4-Dioxane	97
Bromodichloromethane	100
cis-1,3-Dichloropropene	100
4-Methyl-2-pentanone	95
Toluene	94
trans-1,3-Dichloropropene	104
1,1,2-Trichloroethane	91
Tetrachloroethene	91
2-Hexanone	88

Client Sample ID: CCV Lab ID#: 1212384A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122002 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/20/12 03:06 PM

Compound		%Recovery
Dibromochloromethane	9 3.	101
1,2-Dibromoethane (EDB)		95
Chlorobenzene		90
Ethyl Benzene		92
m,p-Xylene		95
o-Xylene	. 6	97
Styrene		96
Bromoform	()	104
Cumene		98
1,1,2,2-Tetrachloroethane		97
Propylbenzene		103
4-Ethyltoluene		94
1,3,5-Trimethylbenzene		100
1,2,4-Trimethylbenzene		92
1,3-Dichlorobenzene		100
1,4-Dichlorobenzene	00.1	99
alpha-Chlorotoluene		114
1,2-Dichlorobenzene		95
1,2,4-Trichlorobenzene		91
Hexachlorobutadiene		98

String 1, per in 1		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: CCV Lab ID#: 1212384A-07B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/12 04:32 PM

Freon 12 109 Freon 114 108 Chloromethane 117 Vinyl Chloride 107 1.3-Butadiene 98 Bromomethane 129 Chloroethane 95 Freon 11 95 Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methylet-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 99 strans-1,2-Dichloroethane 99 cloroform 95 Chloroform 95 Chloroform 95 Chloroform 95 Chloroform 96 Chloroform 96 Chlorotethane 99 <	Compound	%Recovery
Chloromethane 117 Vinyl Chloride 107 1,3-Butadiene 98 Bromomethane 129 Chloroethane 95 Freon 11 95 Ethanol 88 Freon 113 88 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyler Lutyl ether 85 trans-1,2-Dichloroethene 89 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 99 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethane 99 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 96 Benzene 90 1,2-Dichloroethane	Freon 12	109
Vinyl Chloride 107 1,3-Butadiene 98 Bromomethane 129 Chloroethane 95 Freon 11 95 Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 Title (Strate) 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2-4-Trimethypentane 92 Benzene 90 1,2-Dichloroethane 96 Trichloroethene 101 1,4-Dioxane 101 T	Freon 114	108
1,3-Butadiene 98 Bromomethane 129 Chloroethane 95 Freon 11 95 Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methylene Chloride 96 Methyler Luyl ether 85 trans-1,2-Dichloroethene 89 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 99 tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,2-Dichloropropane 96 1,2-Dichloropropopene 101	Chloromethane	117
Description	Vinyl Chloride	107
Chloroethane 95 Freon 11 95 Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 95 Ti,1,1-Trichloroethane 97 Cycloexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Tirchloroethene 99 1,2-Dichloropropane 101 1,2-Dichloropropane 104 cis-1,3-Dichloropropene 102	·	98
Freon 11 95 Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 89 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 sch-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 101 Bromodichloromethane 101 Erbonaria 304	Bromomethane	129
Ethanol 88 Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethane 101 Bromodichloromethane 101 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94	Chloroethane	95
Freon 113 93 1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyle tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 1,2-Dichloropropane 101 Bromodichloromethane 101 Bromodichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 Totuloroethane 94	Freon 11	95
1,1-Dichloroethene 86 Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bronodichloromethane 102 4-Methyl-2-pentanone 94 Toluene 94 Toluene 94 Toluene 94 Tetrachloroethene	Ethanol	88
Acetone 100 2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 101 Toolhoromethane 101 Eromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Tollene 94 trans-1,3-Dichloroptopene 105 1,1,2-Trichloroethane	Freon 113	93
2-Propanol 90 Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methylene Chloride 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 Toluene 94 Tothoroethane 94 Tothoroethane 94	1,1-Dichloroethene	86
Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 tous-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroeth	Acetone	100
Carbon Disulfide 94 3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 Toluene 94 Tothoroethane 94 Tothoroethane 94	2-Propanol	90
3-Chloropropene 95 Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 101 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 toluene 94 Tetrachloroethane 94		94
Methylene Chloride 96 Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 101 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 94		95
Methyl tert-butyl ether 85 trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		96
trans-1,2-Dichloroethene 88 Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		85
Hexane 89 1,1-Dichloroethane 89 2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		
2-Butanone (Methyl Ethyl Ketone) 99 cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Tolluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		89
cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	1,1-Dichloroethane	89
cis-1,2-Dichloroethene 90 Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	2-Butanone (Methyl Ethyl Ketone)	99
Tetrahydrofuran 89 Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		90
Chloroform 95 1,1,1-Trichloroethane 97 Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		89
Cyclohexane 92 Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		95
Carbon Tetrachloride 103 2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	1,1,1-Trichloroethane	97
2,2,4-Trimethylpentane 92 Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	Cyclohexane	92
Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	Carbon Tetrachloride	103
Benzene 90 1,2-Dichloroethane 98 Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	2,2,4-Trimethylpentane	92
Heptane 96 Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		90
Trichloroethene 99 1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	1,2-Dichloroethane	98
1,2-Dichloropropane 96 1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	Heptane	96
1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	Trichloroethene	99
1,4-Dioxane 101 Bromodichloromethane 104 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	1,2-Dichloropropane	96
cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		101
4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	Bromodichloromethane	104
4-Methyl-2-pentanone 94 Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92	cis-1,3-Dichloropropene	102
Toluene 94 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		94
trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 94 Tetrachloroethene 92		94
1,1,2-Trichloroethane94Tetrachloroethene92		105
Tetrachloroethene 92		
		92
2 HOAGHORD	2-Hexanone	90

Client Sample ID: CCV Lab ID#: 1212384A-07B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/12 04:32 PM

Compound		%Recovery
Dibromochloromethane	3 2.	103
1,2-Dibromoethane (EDB)		98
Chlorobenzene		93
Ethyl Benzene	100	97
m,p-Xylene		101
o-Xylene	. 6	102
Styrene		100
Bromoform		109
Cumene		105
1,1,2,2-Tetrachloroethane		99
Propylbenzene		109
4-Ethyltoluene		103
1,3,5-Trimethylbenzene		110
1,2,4-Trimethylbenzene		102
1,3-Dichlorobenzene		108
1,4-Dichlorobenzene	70.	108
alpha-Chlorotoluene		127
1,2-Dichlorobenzene		101
1,2,4-Trichlorobenzene		98
Hexachlorobutadiene		105

January 1, por tar visit and Japaneses		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: LCS Lab ID#: 1212384A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122003
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/20/12 04:17 PM

Freon 12 102 Freon 114 103 Chloromethane 117 Vinyl Chloride 102 1,3-Butadiene 96 Bromomethane 122 Chloroethane 108 Freon 11 94 Ethanol 115 Freon 113 36 1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methyler Chloride 90 Methyler Lutyl ether 83 strans-1,2-Dichloroethene 83 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahytrofuran 82 Chloroform 89 1,1-1-Tichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2-4-Trimethylpentane 88 Benzene<	Compound	%Recovery
Chloromethane 117 Vinyl Chloride 102 1,3-Butadiene 96 Bromomethane 122 Chloroethane 108 Freon 11 94 Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chioropropene 100 Methylene Chloride 90 Methylene Chloride 91 Methyl tert- butyl ether 83 strans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 82 Tetrahydrofura 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 <	Freon 12	102
Vinyl Chloride 102 1,3-Butadiene 96 Bromomethane 122 Chloroethane 108 Freon 11 94 Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 1111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 83 trans-1,2-Dichloroethene 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 84 4s-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 80 Carbon Tetrachloride 94 2,2-4-Timethypentane 86 Benzene 86 1,2-Dichloroethane 96 Frichloroethene 97 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 <td>Freon 114</td> <td>103</td>	Freon 114	103
1,3-Butadiene 96 Brommethane 122 Chloroethane 108 Freon 11 94 Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 1111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methylere Lobyle ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1-1-Trichloroethane 90 Cycloexane 86 Carbon Tetrachloride 94 2,2-4-Trimethylpentane 86 Benzene 86 1,2-Dichloroethane 91 Heptane 99 Tichloroethene 96 1,4-Dioxane 96 Bromodichloromethane 96	Chloromethane	117
Bromomethane	Vinyl Chloride	102
Chloroethane 108 Freon 11 94 Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methylene Chloride 90 Methylene Chloride 94 Hexane 83 1,2-Dichloroethene 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cycloexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 1+eptane 89 Trichloroethane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 <td< td=""><td>1,3-Butadiene</td><td>96</td></td<>	1,3-Butadiene	96
Freon 11 94 Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methylene Chloride 90 Methyletr-butyl ether 83 trans-1,2-Dichloroethene 82 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1-1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2-4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 96 Brickhorethene 94 1,2-Dichloropropane 96 1,4-Dioxane 96 <td< td=""><td>Bromomethane</td><td>122</td></td<>	Bromomethane	122
Ethanol 115 Freon 113 86 1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 86 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 Hethyl-2-pentanone 97 Toluene 88 <	Chloroethane	108
Freon 113 86 1,1-Dichloroethene 88 Acetone 1111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyle tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Tichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 97 5-Linchoropropene 97 4-Methyl-2-pentanone 97	Freon 11	94
1,1-Dichloroethene 88 Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 86 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 97 Toluene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 89 Tetrachloroethene 89	Ethanol	115
Acetone 111 2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloroptopene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 89	Freon 113	86
2-Propanol 94 Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 86 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 88 Toluene 88 trans-1,3-Dichloroptopene 101 1,1,2-Tirchloroethane 89 Tetrachloroethene 89	1,1-Dichloroethene	88
Carbon Disulfide 106 3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 89	Acetone	111
3-Chloropropene 100 Methylene Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 90 Tetrachloroethane 89 Tetrachloroethane 89	2-Propanol	94
Methylter Chloride 90 Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 99 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 99 Tetrachloroethane 89 Tetrachloroethane 89	Carbon Disulfide	106
Methyl tert-butyl ether 83 trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 89	3-Chloropropene	100
trans-1,2-Dichloroethene 94 Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 91 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Methylene Chloride	90
Hexane 82 1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 89	Methyl tert-butyl ether	83
1,1-Dichloroethane 83 2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Tolluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	trans-1,2-Dichloroethene	94
2-Butanone (Methyl Ethyl Ketone) 94 cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Hexane	82
cis-1,2-Dichloroethene 87 Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	1,1-Dichloroethane	83
Tetrahydrofuran 82 Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	2-Butanone (Methyl Ethyl Ketone)	94
Chloroform 89 1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	cis-1,2-Dichloroethene	87
1,1,1-Trichloroethane 90 Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Tetrahydrofuran	
Cyclohexane 86 Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Chloroform	89
Carbon Tetrachloride 94 2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	1,1,1-Trichloroethane	90
2,2,4-Trimethylpentane 83 Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Tolluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Cyclohexane	86
Benzene 86 1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Tolluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Carbon Tetrachloride	
1,2-Dichloroethane 91 Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	2,2,4-Trimethylpentane	83
Heptane 89 Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Benzene	86
Trichloroethene 94 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	1,2-Dichloroethane	91
1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Heptane	89
1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Trichloroethene	94
Bromodichloromethane 96 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	1,2-Dichloropropane	88
cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	1,4-Dioxane	96
4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	Bromodichloromethane	96
4-Methyl-2-pentanone 97 Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87	cis-1,3-Dichloropropene	97
Toluene 88 trans-1,3-Dichloropropene 101 1,1,2-Trichloroethane 89 Tetrachloroethene 87		
1,1,2-Trichloroethane89Tetrachloroethene87		88
1,1,2-Trichloroethane89Tetrachloroethene87	trans-1,3-Dichloropropene	
		89
2-Hexanone 98	Tetrachloroethene	87
	2-Hexanone	98

Client Sample ID: LCS Lab ID#: 1212384A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122003
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/20/12 04:17 PM

Compound		%Recovery
Dibromochloromethane	(V).	96
1,2-Dibromoethane (EDB)		92
Chlorobenzene		89
Ethyl Benzene	100	88
m,p-Xylene		90
o-Xylene	. 6	93
Styrene		97
Bromoform	()	98
Cumene		93
1,1,2,2-Tetrachloroethane		94
Propylbenzene	CO OO	98
4-Ethyltoluene		84
1,3,5-Trimethylbenzene		93
1,2,4-Trimethylbenzene		86
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene	76. 7	93
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		90
1,2,4-Trichlorobenzene		89
Hexachlorobutadiene		89

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1212384A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122004
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/20/12 05:41 PM

Compound %Recovery Freon 12 104 Freon 114 106 Chloromethane 118 Vinyl Chloride 105 1,3-Butadiene 99 Bromomethane 125 Chloroethane 110 Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 86 Hexane 82 Hexane 82 Hexane 86 Labanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 86 Etrahydrofuran 86 Chioroform 91 1,1,1-Trichloroethane 92 Evaluation (Methyl Ethyl Ketone) 96 cis-1,2-Dichloroeth		
Freon 114 106 Chloromethane 118 Vinyl Chloride 105 1,3-Butadiene 99 Bromomethane 125 Chloroethane 110 Freon 11 95 Ethanol 17 Freon 113 89 1,1-Dichloroethene 92 Acetone 915 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethene 98 Hexane 82 1,1-Dichloroethene 99 Gis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 Carbon Tetrachloride 96 Carbon Tetrachloroethane 96 1,2-Dichlo	Compound	%Recovery
Chloromethane 118 Vinyl Chloride 105 1,3-Butadiene 99 Bromomethane 125 Chloroethane 110 Freon 11 96 Ethanol 117 Freon 13 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 86 trans-1,2-Dichloroethene 86 2-Butaone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 86 Chloroform 91 1,1,1-Trichloroethane 96 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 96 Carbon Tetrachloride 96 Cis-1,3-Dichloropropane 87	Freon 12	104
Vinyl Chloride 105 1,3-Butadiene 99 Bromomethane 125 Chloroethane 110 Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methylene Chloride with tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethane 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 96 Heptane 86	Freon 114	106
1,3-Butadiene 99 Bromomethane 125 Chloroethane 110 Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methylene Chloride 98 1,2-Dichloroethene 86 1,2-Dichloroethene 86 2-Butanone (Methyl Ethyl Ketone) 97 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 Carbon Tetrachloride 96 Carbon Tetrachloride 96 1,2-D	Chloromethane	118
Bromomethane 125 Chloroethane 110 Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 86 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethane 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 86 Carbon Tetrachloride 84 Benzene 87 1,2-Dichloropthane 87 1,2-Dichloroptopone 88 Trichloroethane 96 Bromodichloromethane 96	Vinyl Chloride	105
Chloroethane 110 Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-buryl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloropropane 87 1,2-Dichloropropane 88 Trichloroethane 96 Cis-1,3-Dichloropropane 96 <	1,3-Butadiene	99
Freon 11 95 Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyle terbutyl ether 36 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 39 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 95 1,2-Dichloropropane 88 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 88 Hethyl-2-pentanone 96 <td>Bromomethane</td> <td>125</td>	Bromomethane	125
Ethanol 117 Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 39 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 36 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 87 1,2-Dichloropropane 87 1,4-Dioxane 96 Beromodichloromethane 96 Cis-1,3-Dichloropropene 88 Hemptone 98 Hemptone 98 Hemptone 96 </td <td>Chloroethane</td> <td>110</td>	Chloroethane	110
Freon 113 89 1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 Cis-1,3-Dichloropropene 48 4-Methyl-2-pentanone 96 <td>Freon 11</td> <td></td>	Freon 11	
1,1-Dichloroethene 92 Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 Cis-1,3-Dichloropropene 88 Hethyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 89 <	Ethanol	117
Acetone 115 2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloroptopene 89 Tetrachloroethene 89 <t< td=""><td>Freon 113</td><td>89</td></t<>	Freon 113	89
2-Propanol 99 Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 89	1,1-Dichloroethene	92
Carbon Disulfide 109 3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 89 Tetrachloroethane 89 Tetrachloroethene <td>Acetone</td> <td>115</td>	Acetone	115
3-Chloropropene 102 Methylene Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 89 1,1,2-Trichloroethane 89 Toluene 89 Tetrachloroethane 89 <td>2-Propanol</td> <td></td>	2-Propanol	
Methyler Chloride 90 Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 89 Tetrachloroethane 89 Tetrachloroethane 89	Carbon Disulfide	
Methyl tert-butyl ether 86 trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropthane 89 Tetrachloro	3-Chloropropene	102
trans-1,2-Dichloroethene 98 Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Tolluene 88 trans-1,3-Dichloropropene 88 Trichloroethane 89 Tetrachloroethene 89 Tetrachloroethene 89	Methylene Chloride	90
Hexane 82 1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Methyl tert-butyl ether	86
1,1-Dichloroethane 86 2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	trans-1,2-Dichloroethene	98
2-Butanone (Methyl Ethyl Ketone) 97 cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Hexane	82
cis-1,2-Dichloroethene 89 Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	1,1-Dichloroethane	86
Tetrahydrofuran 86 Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	2-Butanone (Methyl Ethyl Ketone)	97
Chloroform 91 1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	cis-1,2-Dichloroethene	89
1,1,1-Trichloroethane 92 Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Tolluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Tetrahydrofuran	86
Cyclohexane 86 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Chloroform	91
Carbon Tetrachloride 96 2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	1,1,1-Trichloroethane	92
2,2,4-Trimethylpentane 84 Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Cyclohexane	86
Benzene 87 1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Carbon Tetrachloride	96
1,2-Dichloroethane 91 Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	2,2,4-Trimethylpentane	
Heptane 88 Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Benzene	
Trichloroethene 95 1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	1,2-Dichloroethane	91
1,2-Dichloropropane 87 1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Heptane	88
1,4-Dioxane 96 Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Trichloroethene	95
Bromodichloromethane 96 cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	1,2-Dichloropropane	87
cis-1,3-Dichloropropene 98 4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	1,4-Dioxane	96
4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	Bromodichloromethane	96
4-Methyl-2-pentanone 96 Toluene 88 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88	cis-1,3-Dichloropropene	98
trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 89 Tetrachloroethene 88		
1,1,2-Trichloroethane89Tetrachloroethene88	Toluene	88
1,1,2-Trichloroethane89Tetrachloroethene88	trans-1,3-Dichloropropene	
		89
2-Hexanone 101	Tetrachloroethene	88
	2-Hexanone	101

Client Sample ID: LCSD Lab ID#: 1212384A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122004
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/20/12 05:41 PM

Compound		%Recovery
Dibromochloromethane		97
1,2-Dibromoethane (EDB)		93
Chlorobenzene		88
Ethyl Benzene		88
m,p-Xylene		90
o-Xylene	. 60	95
Styrene		97
Bromoform	()	97
Cumene		94
1,1,2,2-Tetrachloroethane		95
Propylbenzene		99
4-Ethyltoluene		85
1,3,5-Trimethylbenzene		94
1,2,4-Trimethylbenzene		88
1,3-Dichlorobenzene	25 20	96
1,4-Dichlorobenzene	70.	94
alpha-Chlorotoluene		110
1,2-Dichlorobenzene		90
1,2,4-Trichlorobenzene		91
Hexachlorobutadiene		88

Type: NA Not Applicable	%Recovery	Method Limits
Surrogates		
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCS Lab ID#: 1212384A-08B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/12 05:16 PM

Compound	%Recovery
Freon 12	98
Freon 114	101
Chloromethane	111
Vinyl Chloride	102
1,3-Butadiene	93
Bromomethane	122
Chloroethane	111
Freon 11	88
Ethanol	112
Freon 113	88
1,1-Dichloroethene	88
Acetone	101
2-Propanol	90
Carbon Disulfide	103
3-Chloropropene	98
Methylene Chloride	88
Methyl tert-butyl ether	81
trans-1,2-Dichloroethene	95
Hexane	81
1,1-Dichloroethane	83
2-Butanone (Methyl Ethyl Ketone)	94
cis-1,2-Dichloroethene	89
Tetrahydrofuran	84
Chloroform	88
1,1,1-Trichloroethane	91
Cyclohexane	90
Carbon Tetrachloride	100
2,2,4-Trimethylpentane	86
Benzene	88
1,2-Dichloroethane	89
Heptane	89
Trichloroethene	95
1,2-Dichloropropane	88
1,4-Dioxane	96
Bromodichloromethane	97
cis-1,3-Dichloropropene	95
4-Methyl-2-pentanone	95
Toluene	87
trans-1,3-Dichloropropene	104
1,1,2-Trichloroethane	91
Tetrachloroethene	90
2-Hexanone	100

Client Sample ID: LCS Lab ID#: 1212384A-08B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/12 05:16 PM

Compound		%Recovery
Dibromochloromethane	(V).	98
1,2-Dibromoethane (EDB)		94
Chlorobenzene	CO.	90
Ethyl Benzene	100	90
m,p-Xylene		94
o-Xylene	. 6	94
Styrene		99
Bromoform		101
Cumene		94
1,1,2,2-Tetrachloroethane		96
Propylbenzene	.(1)	100
4-Ethyltoluene		91
1,3,5-Trimethylbenzene		100
1,2,4-Trimethylbenzene		88
1,3-Dichlorobenzene		98
1,4-Dichlorobenzene	70.	95
alpha-Chlorotoluene		117
1,2-Dichlorobenzene		93
1,2,4-Trichlorobenzene		92
Hexachlorobutadiene		92

Container Type: NA - Not Applicable

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: LCSD Lab ID#: 1212384A-08BB

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2122105
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/12 06:09 PM

Compound	%Recovery
Freon 12	99
Freon 114	104
Chloromethane	119
Vinyl Chloride	102
1,3-Butadiene	99
Bromomethane	122
Chloroethane	112
Freon 11	87
Ethanol	117
Freon 113	88
1,1-Dichloroethene	90
Acetone	95
2-Propanol	96
Carbon Disulfide	107
3-Chloropropene	100
Methylene Chloride	88
Methyl tert-butyl ether	83
trans-1,2-Dichloroethene	96
Hexane	82
1,1-Dichloroethane	83
2-Butanone (Methyl Ethyl Ketone)	96
cis-1,2-Dichloroethene	88
Tetrahydrofuran	83
Chloroform	88
1,1,1-Trichloroethane	90
Cyclohexane	86
Carbon Tetrachloride	94
2,2,4-Trimethylpentane	82
Benzene	87
1,2-Dichloroethane	89
Heptane	88
Trichloroethene	96
1,2-Dichloropropane	88
1,4-Dioxane	97
Bromodichloromethane	95
cis-1,3-Dichloropropene	97
4-Methyl-2-pentanone	95
Toluene	87
trans-1,3-Dichloropropene	98
1,1,2-Trichloroethane	86
Tetrachloroethene	89
2-Hexanone	96

Client Sample ID: LCSD Lab ID#: 1212384A-08BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2122105 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/12 06:09 PM

Compound		%Recovery
Dibromochloromethane	(V).	94
1,2-Dibromoethane (EDB)		94
Chlorobenzene	CO.	90
Ethyl Benzene		88
m,p-Xylene		87
o-Xylene	. 6	88
Styrene		94
Bromoform	()	99
Cumene		90
1,1,2,2-Tetrachloroethane		94
Propylbenzene	CO OO	93
4-Ethyltoluene		83
1,3,5-Trimethylbenzene		92
1,2,4-Trimethylbenzene		81
1,3-Dichlorobenzene		91
1,4-Dichlorobenzene	76. 7	88
alpha-Chlorotoluene		111
1,2-Dichlorobenzene		86
1,2,4-Trichlorobenzene		80
Hexachlorobutadiene	, 0, 1	84

Container Type: NA - Not Applicable

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	105	70-130

ANALYTICAL REPORT

Address

Telephone

CLIENT DETAILS

Contact

Client

sch4p4(6) Pers

GOLDER ASSOCIATES PTY LTD

Address PO BOX 5823 216 Draper St

CAIRNS

CAIRNS QLD 4870

07 4054 8200 Telephone 07 4054 8201 Facsimile

sch4p4(6) Personal information Email

087673045 Kwikleen Project

CQ 3284 Order Number 1

LABORATORY DETAILS

sch4p4(6) Pe Manager

Laboratory SGS Cairns Environmental

Unit 2, 58 Comport St

Portsmith QLD 4870

+61 07 4035 5111

+61 07 4035 5122 Facsimile

AU.Environmental.Cairns@sgs.com Email

CE102092 R0 SGS Reference 0000004390 Report Number 19 Dec 2012 Date Reported

Date Received 12 Dec 2012

COMMENTS

Samples

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

nation 1 VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE114257.

SIGNATORIES

sch4p4(6) Personal information

sch4p4(6) Perso

Micro Supervisor

SGS Australia Ptv Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

File B

ANALYTICAL REPORT

CE102092 R0

Sample Number Sample Matrix Sample Date Sample Name

VOCs in Water Method: AN433/AN434

Fumigants

2,2-dichloropropane	μg/L	0.5	<50↑
1,2-dichloropropane	µg/L	0.5	<50↑
trans-1,3-dichloropropene	µg/L	0.5	<50↑
cis-1,3-dichloropropene	µg/L	0.5	<50↑
1.2-dibromoethane (EDB)	ua/L	0.5	<50↑

Halogenated Aliphatics

	μg/L	0.5	<50↑	
ans-1,3-dichloropropene	μg/L	0.5	<50↑	
s-1,3-dichloropropene	μg/L	0.5	<50↑	
2-dibromoethane (EDB)	μg/L	0.5	<50↑	
lelegeneted Alinhetics				cente 100
lalogenated Aliphatics				
ichlorodifluoromethane (CFC-12)	μg/L	5	<500↑	30
hloromethane	μg/L	5	<500↑	
inyl chloride (Chloroethene)	μg/L	0.3	<30↑	
romomethane	μg/L	10	<1000↑	~
hloroethane	μg/L	5	<500↑	O
richlorofluoromethane	μg/L	1	<100↑	
1-dichloroethene	μg/L	0.5	<50↑	7
ans-1,2-dichloroethene	μg/L	0.5	<50↑	
1-dichloroethane	μg/L	0.5	<50↑	
s-1,2-dichloroethene	μg/L	0.5	230	
romochloromethane	μg/L	0.5	<50↑	
2-dichloroethane	μg/L	0.5	<50↑	
1,1-trichloroethane	μg/L	0.5	<50↑	
1-dichloropropene	μg/L	0.5	<50↑	
arbon tetrachloride	μg/L	0.5	<50↑	
ibromomethane	μg/L	0.5	<50↑	
richloroethene (Trichloroethylene,TCE)	μg/L	0.5	440	
1,2-trichloroethane	μg/L	0.5	<50↑	
3-dichloropropane	μg/L	0.5	<50↑	
etrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	1200	
1,1,2-tetrachloroethane	μg/L	0.5	<50↑	
1,2,2-tetrachloroethane	μg/L	0.5	<50↑	
2,3-trichloropropane	μg/L	0.5	<50↑	
2-dibromo-3-chloropropane	μg/L	0.5	<50↑	
exachlorobutadiene	μg/L	0.5	<50↑	

ANALYTICAL REPORT

CE102092 R0

Sample Date Sample Name

VOCs in Water Method: AN433/AN434 (continued)				
Halogenated Aromatics				
Chlorobenzene	μg/L	0.5	<50↑	
Bromobenzene	μg/L	0.5	<50↑	
2-chlorotoluene	μg/L	0.5	<50↑	
4-chlorotoluene	μg/L	0.5	<50↑	
1,3-dichlorobenzene	μg/L	0.5	<50↑	
1,4-dichlorobenzene	μg/L	0.3	<50↑	
1,2-dichlorobenzene	μg/L	0.5	<50↑	
1,2,4-trichlorobenzene	μg/L	0.5	<50↑	.(7)
1,2,3-trichlorobenzene	μg/L	0.5	<50↑	
Surrogates			A 1	Slife
Dibromofluoromethane (Surrogate)	%	-	113	
d4-1,2-dichloroethane (Surrogate)	%	-	112	
d8-toluene (Surrogate)	%	-	100	
Bromofluorobenzene (Surrogate)	%	-	120	
Totals				
Total Halogenated Hydrocarbons	μg/L	10	2 - 0	
Trihalomethanes		(0)	000	

Surrogates

Dibromofluoromethane (Surrogate)	%	-	113
d4-1,2-dichloroethane (Surrogate)	%	-	112
d8-toluene (Surrogate)	%	-	100
Bromofluorobenzene (Surrogate)	%	-	120

Totals

Total Halogenated Hydrocarbons	μg/L	10					

Trihalomethanes

Chloroform (THM)	μg/L	0.5	<50↑
Promodichloromethane (THM)	µg/L	0.5	<50↑
Dibromochloromethane (THM)	µg/L	0.5	<50↑
Bromoform (THM)	μg/L	0.5	<50↑
Publishedon	4		

QC SUMMARY

CE102092 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

METHOD SUMMARY

CE102092 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES .

Insufficient sample for analysis. IS

Sample listed, but not received. LNR

This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

Limit of Reporting LOR

Raised or Lowered Limit of Reporting $\uparrow \downarrow$

Samples analysed as received.

Solid samples expressed on a dry weight basis.

on Resoluces Dischosure Local Dischosure The sample was not analysed for this analyte

NVL Not Validated

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

APPENDIX D

Published on Results Feb-March 2013 MW15CP-MW20CP Borehole Logs

Kwikleen

PROJECT:

REPORT OF BOREHOLE: MW15CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 13/2/13 JOB NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC DATE: 8/4/13

		73045				IOLL	DEPTH: 4.00 m	_	CHE		13
	lling		Sampling	T		_	Field Material Desc				
PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS	
	0.0	0.20	PID 0.00 m 2.0 ppm PID 0.20 m 2.6 ppm		× · · · × · · · · · · · · · · · · · · ·		Silty SAND fine to coarse grained, dark brown, some fine sub-angular gravels, moist, loose SAND fine to coarse grained, dark brown, some silt, moist, loose	М	L	Concrete	е
	0.5—	0.80						М	2	✓— Bentonit	e
	1.0—	0.80					SAND fine to coarse grained, pale brown, some silt, moist to wet, loose				
	- - 1.5-		PID 1.20 m 2.3 ppm				SOIS	M - W	L	Clean W Sand	/ashed
	-	1.70 1.80	PID 1.80 m 1.4 ppm				Clayey SAND fine grained, pale brown, high plasticity clay, wet, loose CLAY	w	L		
	2.0	2.20	PID 2.20 m				high plasticity, dark grey, moist, firm Sandy CLAY	М	F		
	2.5—	2.40	1.3 ppm				high plasticity, dark grey, fine grained sand, moist, soft CLAY high plasticity, mottled brown and grey, some fine sands, moist, firm	M	S	Slotted	
	3.0 —		PID 2.80 m 1.6 ppm			-		M	F		
	Q	3.30	PID 3.30 m 3.2 ppm		- -		Gravelly CLAY high plasticity, mottled brown and grey, some fine	М	St		
	3.5	,	PID 3.80 m				\rounded/subrounded gravels, moist, stiff CLAY high plasticity, mottled brown and yellow brown, moist, very stiff	M	VSt		
	-4.0 4.0		3.4 ppm		==		END OF BOREHOLE @ 4.00 m				
	4.5—										
	5.0										

Kwikleen

PROJECT:

REPORT OF BOREHOLE: MW16CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 13/2/13 JOB NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC DATE: 8/4/13

	B NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC DA										
	ling		Sampling	n.		3OL	Field Material Desc				
PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER	DETAILS
	0.0 —		PID 0.10-0.30 m 0.5 ppm		× × × × × × ×		Silty SAND fine to coarse grained, dark brown, some fine angular gravels, dry to moist, loose	D-			— Concrete
	0.5 —	0.80	PID 0.60-0.80 m 0.5 ppm		× × × × × × × × × × × × × × × × × × ×			M	2		— Bentonite
	1.0 —	0.00					SAND fine to coarse grained, yellow brown, moist, loose				
	1.5 —		PID 1.30-1.50 m 0.2 ppm					М	L	-	— Clean Washe Sand
	- - -	1.80	PID 1.90-2.10 m				becoming pale grey at 1.8 m, gravelly, fine, subrounded				
	2.0 —	2.10	0.3 ppm PID 2.20-2.40 m 0.3 ppm			Q	CLAY high plasticity, mottled grey brown, moist, firm	M	F		
	2.5 — -	2.50	PID 2.50-2.70 m 0.0 ppm				Clayey SAND fine to medium grained, mottled grey brown, high plasticity clay, moist, loose	M	L		— Slotted
	3.0 —	2.90	PID 3.00-3.20 m 0.2 ppm				CLAY high plasticity, dark brown, some fine rounded/subrounded gravels, moist, soft	M	s		
	3.5	3.40) <u>,</u>		- - - -		CLAY high plasticity, mottled grey and yellow brown, some fine	IVI	3		
	- - -		PID 3.80-4.00 m				rounded/subrounded gravels, moist, very stiff	М	VSt		
	4.0 - -		0.5 ppm		<u></u>		END OF BOREHOLE @ 4.00 m				
	- 4.5 <i></i>										
	5.0										

PROJECT:

REPORT OF BOREHOLE: MW17CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 13/2/13 CHECKED: CC DATE: 8/4/13 JOB NO: 087673045 HOLE DEPTH: 4.00 m

			0 "				E LIM CLD			
	illing		Sampling			ب	Field Material Descr			
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS
	0.0 -	0.40	PID 0.00-0.20 m 0.2 ppm		0 O		Gravelly SAND fine to coarse grained, yellow red/brown, angular gravels, some silt, dry to moist, loose	D- M	L	Concrete
	0.5 —		PID 0.50-0.70 m 0.2 ppm		× × ×		Silty Sandy CLAY medium plasticity, dark brown, fine grained sand, dry to moist, stiff	D- M	St	← Bentonite
	1.0 —	1.00	PID 1.00-1.20 m 0.1 ppm		× × ×		SAND fine to coarse grained, pale brown, wet, loose			
	1.5—						conices Dis	w	L	Clean Washe Sand
	2.0 —	2.10	PID 1.90-2.10 m 0.2 ppm				CLAY			
	2.5—		PID 2.20-2.40 m 0.2 ppm			2	high plasticity, grey, some fine sands, moist, firm	М	F	Slotted
	3.0 —	2.70	PID 2.80-3.00 m 0.6 ppm		×		Silty Sandy CLAY medium plasticity, dark grey, fine grained sand, moist to wet, soft	M-W	S	
	3.5		PID 3.80-4.00 m 0.8 ppm		× - × - × - × - × - × - × - × - × - × -		END OF BOREHOLE @ 4.00 m			
	4.5—									
	5.0	- envir	This report of borehole	e mu:	st be r	ead i	n conjunction with accompanying notes and abbreviations. Impt to consider geotechnical states or the geotechnical states.	t has	beer	n prepared for e of the materials GAP gINT FN. F

Kwikleen

PROJECT:

REPORT OF BOREHOLE: MW18CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 14/2/13 HOLE DEPTH: 4.00 m CHECKED: CC

	0070	373045			HOLE	E DEPTH: 4.00 m		CHEC	CKED: CC	DATE: 8/4/13
	lling		Sampling			Field Material Desc				
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG USC SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOME	TER DETAILS
	0.0—	0.20	PID 0.00 m 0.0 ppm	 ×	ð	Silty Gravelly SAND fine to coarse grained, dark brown, some fine to medium angular gravels, dry to moist, loose	D - M	L		Concrete
	-	0.50	PID 0.30 m 0.0 ppm PID 0.40 m	-0 C	0	Sandy GRAVEL fine to medium grained, yellow red, some fine to coarse sands, dry to moist, medium dense	D - M	MD		
	0.5 —	0.00	0.0 ppm PID 0.50 m 0.0 ppm PID 0.60 m		0	SAND fine to coarse grained, dark brown, some silt, moist, loose		8		■ Bentonite
	-		0.0 ppm PID 0.70 m 0.1 ppm PID 0.80 m			S	M	L		
	1.0 —	1.00	0.2 ppm PID 0.90 m 0.1 ppm PID 1.00 m 0.0 ppm	-	-	Clayey SAND fine to coarse grained, grey, medium plasticity clay, moist, loose	М	L		
	-	1.30	PID 1.10 m 0.0 ppm PID 1.20 m 0.1 ppm	-	_	SAND fine to coarse grained, grey, some fine subrounded gravels,				Clean Washer
	1.5 —		PID 1.30 m 0.1 ppm PID 1.40 m 0.2 ppm			wet loose				
	-		PID 1.50 m 0.3 ppm PID 1.60 m 0.3 ppm			110000	w	L		
	2.0		PID 1.70 m 0.2 ppm PID 1.80 m 0.3 ppm			esolice 2009				
	-	2.30	PID 1.90 m 0.4 ppm PID 2.00 m 0.3 ppm	•		Sandy CLAY				
	2.5—		PID 2.10 m 0.0 ppm PID 2.20 m 0.3 ppm PID 2.30 m		• •	high plasticity, mottled grey brown, moist to wet, firm	M -	_		Slotted
	=		0.0 ppm PID 2.40 m 2.2 ppm PID 2.50 m	•	<u> </u>		W	F		
	3.0 —	2.90	0.8 ppm PID 2.60 m 1.1 ppm PID 2.70 m			CLAY high plasticity, mottled grey brown, moist, stiff				
	-	X	0.4 ppm PID 2.80 m 0.5 ppm PID 2.90 m 0.8 ppm		_ _ _		М	St		
	3.5	3.50	PID 3.00 m 1.7 ppm PID 3.10 m			Gravelly CLAY				
	-		2.9 ppm PID 3.20 m 2.2 ppm PID 3.30 m 2.7 ppm		9 - - Z	high plasticity, mottled grey brown, fine subangular gravels, moist, stiff	М	St		
	- - 4.0	3.90	PID 3.40 m 2.4 ppm PID 3.50 m 3.0 ppm		<u></u>	CLAY mottled grey brown, moist, stiff	М	St		
	-		PID 3.60 m 3.1 ppm PID 3.70 m 2.7 ppm			END OF BOREHOLE @ 4.00 m				
	-		PID 3.80 m 2.5 ppm PID 3.90 m 2.3 ppm							
	4.5 — -									
	-									
	5.0	- envir	This report of borehole	must b	e read i	 in conjunction with accompanying notes and abbreviations. Impt to consider geotechnical properties or the geotechnical	It has	beer	prepared for	GAP g i NT FN. F

PROJECT:

REPORT OF BOREHOLE: MW19CD

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe CONTRACTOR: ASB SURFACE RL: DATUM: AHD

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 14/2/13 DATE: 8/4/13 JOB NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC

JOB NO:	0: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC DATE: 8/4/					L. 0/4/10					
	lling		Sampling	_			Field Material Desc				
PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER DE	ETAILS
	0.0 —	0.20	PID 0.00 m 0.2 ppm		×		Silty Clayey SAND fine to coarse grained, dark brown, some fine gravels, moist, loose	М	L		Concrete
	- 0.5 <i>-</i>	0.60	PID 0.30 m 0.0 ppm PID 0.40 m 0.0 ppm PID 0.50 m				CLAY medium plasticity, yellow red, some fine to medium angular gravels, dry to moist, firm	D- M	Ê	—	Bentonite
	- - -	1.00	1 0.6 ppm PID 0.60 m 0.0 ppm PID 0.70 m 0.2 ppm PID 0.80 m 0.0 ppm		; — ; — ; — ; —		Clayey SAND fine to medium grained, dark grey, moist, loose	М	L		
	1.0 — - -	7.00	PID 0.90 m 0.0 ppm PID 1.00 m 0.7 ppm PID 1.10 m 1.9 ppm PID 1.20 m 1.8 ppm PID 1.30 m				CLAY high plasticity, dark grey, moist, soft				Clean Washec Sand
\geq	1.5 —		0.5 ppm PID 1.40 m 0.4 ppm PID 1.50 m 0.5 ppm PID 1.60 m 0.6 ppm PID 1.70 m 0.4 ppm PID 1.80 m				conices Dis	М	S		
	 - - 2.5—	2.10	PID 1.90 m PID 1.90 m O.7 ppm PID 2.00 m O.4 ppm PID 2.10 m O.8 ppm PID 2.20 m O.7 ppm			?	Sandy CLAY high plasticity, grey, fine to medium sands, moist to wet, firm	M -			Slotted
	- - - 3.0 —	3.00	PID 2.30 m 0.8 ppm PID 2.40 m 1.1 ppm PID 2.50 m 0.7 ppm PID 2.60 m 0.8 ppm PID 2.70 m				CLAY	W	F		
	3.5		0.1 ppm PID 2.80 m 0.7 ppm PID 2.90 m 0.7 ppm PID 3.00 m 1.8 ppm PID 3.10 m 2.1 ppm				high plasticity, mottled brown/grey, moist, firm	М	F		
	- - -	3.60	PID 3.20 m 1.7 ppm PID 3.30 m 2.4 ppm PID 3.40 m 2.7 ppm		- -		Gravelly CLAY high plasticity, mottled grey/brown, moist, stiff	М	St		
	4.0		PID 3.50 m 1.7 ppm PID 3.60 m 2.1 ppm PID 3.70 m 2.2 ppm PID 3.80 m				CLAY high plasticity, mottled grey/brown, moist, stiff END OF BOREHOLE @ 4.00 m	М	St		
	- 4.5 — - -		0.4 ppm PID 3.90 m 0.1 ppm								
	- 5.0 <i>-</i>		This consists of the state of t				n conjunction with accompanying notes and abbreviations.	14.1			

Kwikleen

PROJECT:

REPORT OF BOREHOLE: MW20CP

SHEET: 1 OF 1 COORDS: MGA94 56 DRILL RIG: EZI Probe SURFACE RL: DATUM: AHD CONTRACTOR: ASB

LOCATION: Pease Street INCLINATION: -90° LOGGED: OS DATE: 14/2/13 JOB NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC DATE: 8/4/13

JOB NO: 087673045 HOLE DEPTH: 4.00 m CHECKED: CC Drilling Sampling Field Material Description										
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sampling SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	PIEZOMETER DETAILS	
	0.0	0.10	PID 0.20 m 0 ppm PID 0.30 m 1.4 ppm	\$ O	0	Silty Gravelly SAND fine to coarse grained, dark brown, fine gravels, moist, loose Gravelly SAND fine to coarse grained, yellow red, fine to medium angular gravels	М	L	Concrete	
	0.5—		PID 0.40 m 0.5 ppm PID 0.50 m 0.6 ppm PID 0.60 m 1.5 ppm PID 0.70 m 1.1 ppm	× · · · · · · · · · · · · · · · · · · ·	× × ×	Silty SAND fine to medium grained, brown, some clay, moist, loose	М	2)	■ Bentonite	
	1.0 —	1.00	PID 0.80 m 0.8 ppm PID 0.90 m 1.2 ppm PID 1.00 m 2.1 ppm PID 1.10 m 2 ppm PID 1.20 m 0.5 ppm		×	SAND fine to coarse grained, pale grey, wet, loose			- Clean Was	hed
	- 1.5 — - -		PID 1.30 m 1.6 ppm PID 1.40 m 1.3 ppm PID 1.50 m 1.2 ppm PID 1.60 m 1 ppm PID 1.70 m 0.8 ppm			conices Dis	w	L	Sand	
	2.0 —	2.10	PID 1.80 m 0.1 ppm PID 1.90 m 0.7 ppm PID 2.00 m 1.4 ppm PID 2.10 m 5.3 ppm PID 2.20 m 0 ppm			CLAY high plasticity, mottled grey/brown, moist, firm	M	F		
	2.5 —	2.50	PID 2.30 m 0.8 ppm PID 2.40 m 1.1 ppm PID 2.50 m 0.6 ppm PID 2.60 m 0.5 ppm PID 2.70 m 0.3 ppm			Clayey SAND fine to medium grained, grey/brown orange, moist, loose	М	L	Slotted	
	3.0 —	2.90	PID 2.80 m 0 ppm PID 2.90 m 0.3 ppm PID 3.00 m 0.1 ppm PID 3.10 m 0.2 ppm PID 3.20 m 0.6 ppm	× · · · · · · · · · · · · · · · · · · ·		Silty CLAY high plasticity, dark grey, moist to wet, soft				
	3.5		PID 3.30 m 0.7 ppm PID 3.40 m 0.4 ppm PID 3.50 m 0.8 ppm PID 3.60 m 1.8 ppm PID 3.70 m 1.1 ppm	× ·			M - W	s		
	- 4.0 - -		PID 3.80 m 0.8 ppm PID 3.90 m 2.1 ppm	×		END OF BOREHOLE @ 4.00 m				
	- 4.5 — -									
	- 5.0 <i>-</i>									

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/E	DRILLING/EXCAVATION METHOD										
AS*	Auger Screwing	RD	Rotary blade or drag bit	NQ	Diamond Core - 47 mm						
AD*	Auger Drilling	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm						
*V	V-Bit	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm						
*T	TC-Bit, e.g. ADT	RC	Reverse Circulation	HMLC	Diamond Core – 63mm						
HA	Hand Auger	PT	Push Tube	BH	Tractor Mounted Backhoe						
ADH	Hollow Auger	CT	Cable Tool Rig	EX	Tracked Hydraulic Excavator						
DTC	Diatube Coring	JET	Jetting	EE	Existing Excavation						
WB	Washbore or Bailer	NDD	Non-destructive digging	HAND	Excavated by Hand Methods						

PENETRATION/EXCAVATION RESISTANCE

- Low resistance. Rapid penetration possible with little effort from the equipment used.
- Medium resistance. Excavation/possible at an acceptable rate with moderate effort from the equipment used.
- **H High resistance** to penetration/excavation. Further penetration is possible at a slow rate and requires significant effort from the equipment.
- R Refusal or Practical Refusal. No further progress possible without the risk of damage or unacceptable wear to the digging implement or machine.

These assessments are subjective and are dependent on many factors including the equipment power, weight, condition of excavation or drilling tools, and the experience of the operator.

14	Α-	 п

✓ Water level at date shown✓ Partial water loss✓ Complete water loss

GROUNDWATER NOT

OBSERVED

The observation of groundwater, whether present or not, was not possible due to drilling water,

surface seepage or cave in of the borehole/test pit.

GROUNDWATER NOT

ENCOUNTERED

The borehole/test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open

for a longer period.

SAMPLING AND TESTING

SPT Standard Penetration Test to AS1289.6.3.1-2004

4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following 150mm seating 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported

RW Penetration occurred under the rod weight only

HW Penetration occurred under the hammer and rod weight only

HB Hammer double bouncing on anvil

DS Disturbed sample
BDS Bulk disturbed sample

G Gas Sample Water Sample

FP Field permeability test over section noted

FV Field vane shear test expressed as uncorrected shear strength (s_v = peak value, s_r = residual value)

PID Photoionisation Detector reading in ppm
PM Pressuremeter test over section noted

PP Pocket penetrometer test expressed as instrument reading in kPa

U63 Thin walled tube sample - number indicates nominal sample diameter in millimetres

WPT Water pressure tests

DCP Dynamic cone penetration test
CPT Static cone penetration test

CPTu Static cone penetration test with pore pressure (u) measurement

Ranking of Visuall	Ranking of Visually Observable Contamination and Odour (for specific soil contamination assessment projects)									
R = 0	No visible evidence of contamination	R = A	No non-natural odours identified							
R = 1	Slight evidence of visible contamination	R = B	Slight non-natural odours identified							
R = 2	Visible contamination	R = C	Moderate non-natural odours identified							
R = 3	Significant visible contamination	R = D	Strong non-natural odours identified							

ROCK CORE RECOVERY

TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%)

RQD = Rock Quality Designation (%)

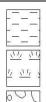
 $= \frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100$

 $= \frac{\sum \text{Length of cylindrical core recovered}}{\text{Length of core run}} \times 100$

 $\frac{\sum Axial \ lengths \ of \ core > 100 \ mm}{Length \ of \ core \ run} \times 100$

METHOD OF SOIL DESCRIPTION USED ON BOREHOLE AND TEST PIT REPORTS

FILL


GRAVEL (GP or GW)

SAND (SP or SW)

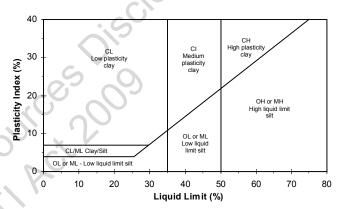
SILT (ML or MH)

CLAY (CL, CI or CH)

ORGANIC SOILS (OL or OH or Pt)

COBBLES or BOULDERS

Combinations of these basic symbols may be used to indicate mixed materials such as sandy clay.


CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil and Rock is classified and described in Reports of Boreholes and Test Pits using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. The material properties are assessed in the field by visual/tactile methods.

Particle Size

Major Divi	sion	Sub Division	Particle Size				
В	OULE	> 200 mm					
(COBB	63 to 200 mm					
GRAVEL		Coarse	20 to 63 mm				
		Medium	6.0 to 20 mm				
		Fine	2.0 to 6.0 mm				
		Coarse	0.6 to 2.0 mm				
SAND		Medium	0.2 to 0.6 mm				
		Fine	0.075 to 0.2 mm				
	SIL	0.002 to 0.075 mm					
	CLA	< 0.002 mm					

Plasticity Properties

MOISTURE CONDITION

AS1726 - 1993

		7101720 1000
Symbol	Term	Description
D	Dry	Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.
M	Moist	Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

CONSIST	CONSISTENCY AND DENSITY									
Symbol	Term	Undrained Shear Strength								
VS	Very Soft	0 to 12 kPa								
S	Soft	12 to 25 kPa								
F	Firm	25 to 50 kPa								
St	Stiff	50 to 100 kPa								
VSt	Very Stiff	100 to 200 kPa								
Н	Hard	Above 200 kPa								

AS1726 - 1993									
Symbol	Term	Density Index %	SPT "N" #						
VL	Very Loose	Less than 15	0 to 4						
L	Loose	15 to 35	4 to 10						
MD	Medium Dense	35 to 65	10 to 30						
D	Dense	65 to 85	30 to 50						
VD	Very Dense	Above 85	Above 50						

In the absence of test results, consistency and density may be assessed from correlations with the observed behaviour of the material.

SPT correlations are not stated in AS1726 – 1993, and may be subject to corrections for overburden pressure and equipment type.

APPENDIX E

Schoshire Loo Feb-Mar 2013 MW15CP-MW20CP (GW), BH15-BH20 (Soil), Published on Reflinct. EB01/EB02 (GW) and SVW16-SVW18 Laboratory Test **Certificates**

3/27/2013

sch4p4(6) Personal information

Golder Associates, Australia 216 Draper Street

Cairns, Queensland 4870

Project Name: Kwikleen Project #: 087673045 Workorder #: 1303260A

Dear sch4p4(6) Personal inform

The following report includes the data for the above referenced project for sample(s) received on 3/14/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal information if you have any questions regarding the data in this report.

Rec	ıar	ds

sch4p4(6) Personal information

sch4p4(6) Personal inforr

Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-985-1020 www.airtoxics.com

WORK ORDER #: 1303260A

Work Order Summary

CLIENT: sch4p4(6) Personal infor BILL TO: Accounts Payable

Golder Associates, Australia Golder Associates, Australia

216 Draper Street PO BOX 6079

Cairns, Queensland 4870 Hawthorne, Australia 3121

PHONE: +61 7 4054 8200 P.O. # CO 3303

FAX: +61 7 4054 8201 PROJECT # 087673045 Kwikleen

DATE RECEIVED: 03/14/2013 **CONTACT:** sch4p4(6) Personal **DATE COMPLETED:** 03/27/2013

		10	RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SVW 16	Modified TO-15	10.8 "Hg	15 psi
02A	SVW 17	Modified TO-15	9.6 "Hg	15 psi
03A	SVW 18	Modified TO-15	11 "Hg	14.5 psi
04A	REP 001	Modified TO-15	10.4 "Hg	15.5 psi
05A	FB 001	Modified TO-15	6.6 "Hg	15 psi
06A	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08AA	LCSD	Modified TO-15	NA	NA
	olished	onReinRe		

sch4p4(6) Personal information

Technical Director

CERTIFIED BY:

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

ilac-MRA

DATE: 03/27/13

Page 2 of 23

LABORATORY NARRATIVE EPA Method TO-15 Golder Associates, Australia Workorder# 1303260A

Five 1 Liter Summa Canister samples were received on March 14, 2013. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

The field blank sample FB 001 has reportable levels of target compounds present.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW 16 Lab ID#: 1303260A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	_
Ethanol	6.3	6.4	12	12	
Acetone	16	23	38	55	
Chloroform	1.6	5.2	7.7	25	
Trichloroethene	1.6	19	8.5	100	
Toluene	1.6	1.7	6.0	6.4	
Tetrachloroethene	1.6	190	11	1300	

Client Sample ID: SVW 17 Lab ID#: 1303260A-02A

Compound	SO.	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloroform	00	1.5	4.5	7.2	22
Trichloroethene	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.5	16	8.0	84
Tetrachloroethene	0 0	1.5	200	10	1300

Client Sample ID: SVW 18 Lab ID#: 1303260A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	6.3	9.4	12	18
Acetone	16	18	37	44
Chloroform	1.6	1.7	7.7	8.2
Trichloroethene	1.6	14	8.4	72
Toluene	1.6	3.1	5.9	12
Tetrachloroethene	1.6	23	11	160
m,p-Xylene	1.6	2.4	6.8	10

Client Sample ID: REP 001 Lab ID#: 1303260A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Ethanol	6.3	7.3	12	14

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: REP 001

Lab ID#: 1303260A-04A			, 0-	
Chloroform	1.6	4.5	7.7	22
Trichloroethene	1.6	11	8.4	58
Tetrachloroethene	1.6	120	11	850

Client Sample ID: FB 001 Lab ID#: 1303260A-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Ethanol	5.2	74	9.8	140
Acetone	13	25	31	60
2-Propanol	5.2	7.0	13	17
Heptane	1.3	1.4	5.3	5.9
Toluene	1.3	18	4.9	69
Ethyl Benzene	1.3	1.3	5.6	5.6
m,p-Xylene	1.3	3.7	5.6	16
o-Xylene	1.3	1.4	5.6	5.9

Client Sample ID: SVW 16 Lab ID#: 1303260A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032027 3.16		of Collection: 3/11/ of Analysis: 3/21/13	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	Not Detected	7.8	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	33	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
1,3-Butadiene	1.6	Not Detected	3.5	Not Detected
Bromomethane	16	Not Detected	61	Not Detected
Chloroethane	6.3	Not Detected	17	Not Detected
Freon 11	1.6	Not Detected	8.9	Not Detected
Ethanol	6.3	6.4	12	12
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Acetone	16	23	38	55
2-Propanol	6.3	Not Detected	16	Not Detected
Carbon Disulfide	6.3	Not Detected	20	Not Detected
3-Chloropropene	6.3	Not Detected	20	Not Detected
Methylene Chloride	16	Not Detected	55	Not Detected
Methyl tert-butyl ether	1.6	Not Detected	5.7	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Hexane	1.6	Not Detected	5.6	Not Detected
1,1-Dichloroethane	1.6	Not Detected	6.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.3	Not Detected	19	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.6	Not Detected
Chloroform	1.6	5.2	7.7	25
1,1,1-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Cyclohexane	1.6	Not Detected	5.4	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.9	Not Detected
2,2,4-Trimethylpentane	1.6	Not Detected	7.4	Not Detected
Benzene	1.6	Not Detected	5.0	Not Detected
1,2-Dichloroethane	1.6	Not Detected	6.4	Not Detected
Heptane	1.6	Not Detected	6.5	Not Detected
Trichloroethene	1.6	19	8.5	100
1,2-Dichloropropane	1.6	Not Detected	7.3	Not Detected
1,4-Dioxane	6.3	Not Detected	23	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.5	Not Detected
Toluene	1.6	1.7	6.0	6.4
trans-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Tetrachloroethene	1.6	190	11	1300
2-Hexanone	6.3	Not Detected	26	Not Detected

Client Sample ID: SVW 16 Lab ID#: 1303260A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032027 3.16		of Collection: 3/11/ of Analysis: 3/21/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.3	Not Detected
Ethyl Benzene	1.6	Not Detected	6.9	Not Detected
m,p-Xylene	1.6	Not Detected	6.9	Not Detected
o-Xylene	1.6	Not Detected	6.9	Not Detected
Styrene	1.6	Not Detected	6.7	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.8	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	Not Detected	7.8	Not Detected
4-Ethyltoluene	1.6	Not Detected	7.8	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	7.8	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	7.8	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.2	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
1,2,4-Trichlorobenzene	6.3	Not Detected	47	Not Detected
Hexachlorobutadiene	6.3	Not Detected	67	Not Detected
Naphthalene	6.3	Not Detected	33	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	94	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	87	70-130

Client Sample ID: SVW 17 Lab ID#: 1303260A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032025 2.97		of Collection: 3/1 of Analysis: 3/20	1/13 11:45:00 A /13 11:49 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	Not Detected	7.3	Not Detected
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	58	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.3	Not Detected
Ethanol	5.9	Not Detected	11	Not Detected
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	Not Detected	35	Not Detecte
2-Propanol	5.9	Not Detected	14	Not Detected
Carbon Disulfide	5.9	Not Detected	18	Not Detecte
3-Chloropropene	5.9	Not Detected	18	Not Detected
	15		52	Not Detected
Methylene Chloride		Not Detected Not Detected	52 5.4	Not Detected
Methyl tert-butyl ether	1.5		5. 4 5.9	
rans-1,2-Dichloroethene	1.5 1.5	Not Detected	5.9 5.2	Not Detecte Not Detecte
Hexane	1.5	Not Detected Not Detected	6.0	Not Detecte
1,1-Dichloroethane				
2-Butanone (Methyl Ethyl Ketone)	5.9	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.4	Not Detected
Chloroform	1.5	4.5	7.2	22
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	Not Detected	5.1	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detecte
2,2,4-Trimethylpentane	1.5	Not Detected	6.9	Not Detected
Benzene	1.5	Not Detected	4.7	Not Detected
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	16	8.0	84
1,2-Dichloropropane	1.5	Not Detected	6.9	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.1	Not Detected
Toluene	1.5	Not Detected	5.6	Not Detected
trans-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	200	10	1300
2-Hexanone	5.9	Not Detected	24	Not Detected

Client Sample ID: SVW 17 Lab ID#: 1303260A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032025 2.97	Date of Collection: 3/11/13 11:45:00 Date of Analysis: 3/20/13 11:49 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	Not Detected	6.8	Not Detected
Ethyl Benzene	1.5	Not Detected	6.4	Not Detected
m,p-Xylene	1.5	Not Detected	6.4	Not Detected
o-Xylene	1.5	Not Detected	6.4	Not Detected
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	Not Detected	7.3	Not Detected

Not Detected

10

7.3

7.3

7.3

7.3

8.9

31

Not Detected

Mothod

1.5 Not Detected 1,4-Dichlorobenzene 8.9 Not Detected alpha-Chlorotoluene 1.5 Not Detected 7.7 Not Detected 1,2-Dichlorobenzene 1.5 Not Detected 8.9 Not Detected 5.9 1,2,4-Trichlorobenzene Not Detected 44 Not Detected Hexachlorobutadiene 5.9 Not Detected 63 Not Detected

1.5

1.5

1.5

1.5

1.5

1.5

5.9

Container Type: 1 Liter Summa Canister

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

Propylbenzene

4-Ethyltoluene

Naphthalene

		Welliou
Surrogates	%Recovery	Limits
Toluene-d8	93	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	105	70-130

Tetrachloroethene

2-Hexanone

Client Sample ID: SVW 18 Lab ID#: 1303260A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032026 Date of Collection: 3/11/13 2:00:00 PM Dil. Factor: Date of Analysis: 3/21/13 12:08 AM 3.14 Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) 1.6 Not Detected 7.8 Not Detected Freon 12 Freon 114 1.6 Not Detected 11 Not Detected Chloromethane 16 Not Detected 32 Not Detected 1.6 Not Detected 4.0 Not Detected Vinyl Chloride 1,3-Butadiene 1.6 Not Detected 3.5 Not Detected 16 Bromomethane Not Detected 61 Not Detected 6.3 Not Detected 16 Not Detected Chloroethane Freon 11 1.6 Not Detected 8.8 Not Detected Ethanol 6.3 9.4 12 18 1.6 Not Detected 12 Not Detected Freon 113 1.6 Not Detected 6.2 Not Detected 1,1-Dichloroethene Acetone 16 18 37 44 2-Propanol 6.3 Not Detected 15 Not Detected Carbon Disulfide 6.3 Not Detected 20 Not Detected 6.3 Not Detected 20 Not Detected 3-Chloropropene Methylene Chloride 16 Not Detected 54 Not Detected Methyl tert-butyl ether 1.6 Not Detected 5.7 Not Detected trans-1,2-Dichloroethene 1.6 Not Detected 6.2 Not Detected 1.6 Not Detected 5.5 Not Detected Hexane 1,1-Dichloroethane 1.6 Not Detected 6.4 Not Detected 2-Butanone (Methyl Ethyl Ketone) 6.3 Not Detected 18 Not Detected cis-1,2-Dichloroethene 1.6 Not Detected 6.2 Not Detected 1.6 4.6 Not Detected Not Detected Tetrahydrofuran 7.7 1.6 Chloroform 1.7 82 1,1,1-Trichloroethane 1.6 Not Detected 8.6 Not Detected 1.6 Not Detected 5.4 Not Detected Cyclohexane Not Detected 9.9 Not Detected Carbon Tetrachloride 1.6 2,2,4-Trimethylpentane 1.6 Not Detected 7.3 Not Detected 1.6 Not Detected 5.0 Not Detected Benzene 1.6 Not Detected 6.4 Not Detected 1,2-Dichloroethane 1.6 Not Detected 6.4 Not Detected Heptane Trichloroethene 1.6 14 8.4 72 1,2-Dichloropropane 1.6 Not Detected 7.2 Not Detected 6.3 Not Detected 23 Not Detected 1.4-Dioxane Bromodichloromethane 1.6 Not Detected 10 Not Detected 1.6 Not Detected 7.1 Not Detected cis-1,3-Dichloropropene 1.6 Not Detected 6.4 Not Detected 4-Methyl-2-pentanone 1.6 3.1 5.9 Toluene Not Detected Not Detected trans-1,3-Dichloropropene 1.6 7.1 1.6 Not Detected 8.6 Not Detected 1,1,2-Trichloroethane

23

Not Detected

11

26

160

Not Detected

1.6

6.3

Client Sample ID: SVW 18 Lab ID#: 1303260A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032026 3.14			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	.13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.2	Not Detected
Ethyl Benzene	1.6	Not Detected	6.8	Not Detected
m,p-Xylene	1.6	2.4	6.8	10
o-Xylene	1.6	Not Detected	6.8	Not Detected
Styrene	1.6	Not Detected	6.7	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.7	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	Not Detected	7.7	Not Detected
4-Ethyltoluene	1.6	Not Detected	7.7	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	7.7	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	7.7	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.1	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
1,2,4-Trichlorobenzene	6.3	Not Detected	47	Not Detected
Hexachlorobutadiene	6.3	Not Detected	67	Not Detected
Naphthalene	6.3	Not Detected	33	Not Detected

Container Type: 1 Liter Summa Canister

Sometime rypor r <u>and came a</u>		Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: REP 001 Lab ID#: 1303260A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032024 3.14		of Collection: 3/1 of Analysis: 3/20/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	Not Detected	7.8	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
1,3-Butadiene	1.6	Not Detected	3.5	Not Detected
Bromomethane	16	Not Detected	61	Not Detected
Chloroethane	6.3	Not Detected	16	Not Detected
Freon 11	1.6	Not Detected	8.8	Not Detected
Ethanol	6.3	7.3	12	14
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Acetone	16	Not Detected	37	Not Detected
2-Propanol	6.3	Not Detected	15	Not Detected
Carbon Disulfide	6.3	Not Detected	20	Not Detected
3-Chloropropene	6.3	Not Detected	20	Not Detecte
Methylene Chloride	16	Not Detected	54	Not Detected
Methyl tert-butyl ether	1.6	Not Detected	5.7	Not Detected
rans-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Hexane	1.6	Not Detected	5.5	Not Detecte
1,1-Dichloroethane	1.6	Not Detected	6.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.3	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.6	Not Detected
Chloroform	1.6	4.5	7.7	22
1,1,1-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Cyclohexane	1.6	Not Detected	5.4	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.9	Not Detected
2,2,4-Trimethylpentane	1.6	Not Detected	7.3	Not Detected
Benzene	1.6	Not Detected	5.0	Not Detected
1,2-Dichloroethane	1.6	Not Detected	6.4	Not Detected
Heptane	1.6	Not Detected	6.4	Not Detected
Trichloroethene	1.6	11	8.4	58
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
1,4-Dioxane	6.3	Not Detected	23	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.1	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.4	Not Detected
Toluene	1.6	Not Detected	5.9	Not Detected
rans-1,3-Dichloropropene	1.6	Not Detected	7.1	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Tetrachloroethene	1.6	120	11	850
2-Hexanone	6.3	Not Detected	26	Not Detected

Client Sample ID: REP 001 Lab ID#: 1303260A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032024 3.14	Date of Collection: 3/11/13 1:00:00 PM Date of Analysis: 3/20/13 11:10 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.2	Not Detected
Ethyl Benzene	1.6	Not Detected	6.8	Not Detected
m,p-Xylene	1.6	Not Detected	6.8	Not Detected
o-Xylene	1.6	Not Detected	6.8	Not Detected
Styrene	1.6	Not Detected	6.7	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.7	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	Not Detected	7.7	Not Detected
4-Ethyltoluene	1.6	Not Detected	7.7	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	7.7	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	7.7	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.1	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.4	Not Detected
1,2,4-Trichlorobenzene	6.3	Not Detected	47	Not Detected
Hexachlorobutadiene	6.3	Not Detected	67	Not Detected
Naphthalene	6.3	Not Detected	33	Not Detected

Container Type: 1 Liter Summa Canister

: 6		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: FB 001 Lab ID#: 1303260A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032023 2.59	Date of Collection: 3/11/13 1:00:00 PM Date of Analysis: 3/20/13 10:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.4	Not Detected
Freon 114	1.3	Not Detected	9.0	Not Detected
Chloromethane	13	Not Detected	27	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	Not Detected	2.9	Not Detected
Bromomethane	13	Not Detected	50	Not Detected
Chloroethane	5.2	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.3	Not Detected
Ethanol	5.2	74	9.8	140
Freon 113	1.3	Not Detected	9.9	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	13	25	31	60
2-Propanol	5.2	7.0	13	17
Carbon Disulfide	5.2	Not Detected	16	Not Detected
3-Chloropropene	5.2	Not Detected	16	Not Detected
Methylene Chloride	13	Not Detected	45	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.7	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	Not Detected	4.6	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.2	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	Not Detected	6.3	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.1	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.0	Not Detected
Benzene	1.3	Not Detected	4.1	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	1.4	5.3	5.9
Trichloroethene	1.3	Not Detected	7.0	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.0	Not Detected
1,4-Dioxane	5.2	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	8.7	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.9	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.3	Not Detected
Toluene	1.3	18	4.9	69
trans-1,3-Dichloropropene	1.3	Not Detected	5.9	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Tetrachloroethene	1.3	Not Detected	8.8	Not Detected
2-Hexanone	5.2	Not Detected	21	Not Detected

Client Sample ID: FB 001 Lab ID#: 1303260A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032023 2.59			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	.11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	1.3	Not Detected	6.0	Not Detected
Ethyl Benzene	1.3	1.3	5.6	5.6
m,p-Xylene	1.3	3.7	5.6	16
o-Xylene	1.3	1.4	5.6	5.9
Styrene	1.3	Not Detected	5.5	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.4	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.9	Not Detected
Propylbenzene	1.3	Not Detected	6.4	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.4	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.4	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.4	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.7	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,2,4-Trichlorobenzene	5.2	Not Detected	38	Not Detected
Hexachlorobutadiene	5.2	Not Detected	55	Not Detected
Naphthalene	5.2	Not Detected	27	Not Detected

Container Type: 1 Liter Summa Canister

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1303260A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

R	1.00 pt. Limit (ppbv) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 2.0 0.50 2.0 0.50 2.0 0.50 2.0 0.50 5.0 2.0 0.50 5.0 2.0 0.50 5.0 2.0 5.0 2.0 5.0	Amount (ppbv) Not Detected	f Analysis: 3/20/13 Rpt. Limit (ug/m3) 2.5 3.5 10 1.3 1.1 19 5.3 2.8 3.8 3.8 3.8 4.9 6.2	Amount (ug/m3) Not Detected
Freon 114 Chloromethane Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 5.0 0.50 0.50 2.0 0.50 2.0 0.50 0.50 0.50 2.0 0.20 0.20 0.20 0.20	Not Detected	3.5 10 1.3 1.1 19 5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected
Chloromethane Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	5.0 0.50 0.50 5.0 2.0 0.50 2.0 0.50 0.50 5.0 2.0 2.0 2.0 2.0	Not Detected	10 1.3 1.1 19 5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected
Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 0.50 5.0 2.0 0.50 2.0 0.50 5.0 2.0 2.0 2.0	Not Detected	1.3 1.1 19 5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected
1,3-Butadiene Bromomethane Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 5.0 2.0 0.50 2.0 0.50 5.0 2.0 2.0 2.0	Not Detected	1.1 19 5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected
Bromomethane Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	5.0 2.0 0.50 2.0 0.50 5.0 2.0 2.0 2.0	Not Detected	19 5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected
Chloroethane Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0 0.50 2.0 0.50 0.50 5.0 2.0 2.0 2.0	Not Detected	5.3 2.8 3.8 3.8 2.0 12 4.9	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected
Freon 11 Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 2.0 0.50 0.50 5.0 2.0 2.0 2.0	Not Detected	2.8 3.8 3.8 2.0 12 4.9	Not Detected Not Detected Not Detected Not Detected Not Detected
Ethanol Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0 0.50 0.50 5.0 2.0 2.0 2.0	Not Detected	3.8 3.8 2.0 12 4.9	Not Detected Not Detected Not Detected Not Detected
Freon 113 1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 0.50 5.0 2.0 2.0 2.0	Not Detected Not Detected Not Detected Not Detected Not Detected	3.8 2.0 12 4.9	Not Detected Not Detected Not Detected
1,1-Dichloroethene Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50 5.0 2.0 2.0 2.0	Not Detected Not Detected Not Detected Not Detected	2.0 12 4.9	Not Detected Not Detected
Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	5.0 2.0 2.0 2.0	Not Detected Not Detected Not Detected	12 4.9	Not Detected
Acetone 2-Propanol Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	5.0 2.0 2.0 2.0	Not Detected Not Detected Not Detected	12 4.9	Not Detected
Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0	Not Detected		Not Detected
Carbon Disulfide 3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0			
3-Chloropropene Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0	Not Detected	U.Z	Not Detected
Methylene Chloride Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	5.0		6.3	Not Detected
Methyl tert-butyl ether trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform		Not Detected	17	Not Detected
trans-1,2-Dichloroethene Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50	Not Detected	1.8	Not Detected
Hexane 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50	Not Detected	1.8	Not Detected
2-Butanone (Methyl Ethyl Ketone) cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene Tetrahydrofuran Chloroform	2.0	Not Detected	5.9	Not Detected
Tetrahydrofuran Chloroform	0.50	Not Detected	2.0	Not Detected
Chloroform	0.50	Not Detected	1.5	Not Detected
	0.50	Not Detected	2.4	Not Detected
	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	3. 4 8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1303260A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3032006 1.00	Date of Collection: NA Date of Analysis: 3/20/13 12:10 PM		3 12:10 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

Container Type: NA - Not Applicable

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: CCV Lab ID#: 1303260A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032002 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 09:53 AM

Compound	%Recovery
Freon 12	95
Freon 114	96
Chloromethane	90
Vinyl Chloride	89
1,3-Butadiene	90
Bromomethane	91
Chloroethane	93
Freon 11	94
Ethanol	90
Freon 113	96
1,1-Dichloroethene	98
Acetone	92
2-Propanol	95
Carbon Disulfide	92
3-Chloropropene	99
Methylene Chloride	88
Methyl tert-butyl ether	108
trans-1,2-Dichloroethene	104
Hexane	104
1,1-Dichloroethane	89
2-Butanone (Methyl Ethyl Ketone)	100
cis-1,2-Dichloroethene	96
Tetrahydrofuran	95
Chloroform	92
1,1,1-Trichloroethane	96
Cyclohexane	106
Carbon Tetrachloride	93
2,2,4-Trimethylpentane	98
Benzene	94
1,2-Dichloroethane	94
Heptane	102
Trichloroethene	92
1,2-Dichloropropane	86
1,4-Dioxane	93
Bromodichloromethane	94
cis-1,3-Dichloropropene	98
4-Methyl-2-pentanone	101
Toluene	93
trans-1,3-Dichloropropene	106
1,1,2-Trichloroethane	97
Tetrachloroethene	101
2-Hexanone	110

Client Sample ID: CCV Lab ID#: 1303260A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032002 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 09:53 AM

Compound		%Recovery
Dibromochloromethane	3.0	104
1,2-Dibromoethane (EDB)		99
Chlorobenzene		96
Ethyl Benzene		107
m,p-Xylene		110
o-Xylene	. 60	110
Styrene		118
Bromoform		104
Cumene		117
1,1,2,2-Tetrachloroethane		87
Propylbenzene	.(100)	105
4-Ethyltoluene		110
1,3,5-Trimethylbenzene		110
1,2,4-Trimethylbenzene	20 3	117
1,3-Dichlorobenzene		97
1,4-Dichlorobenzene	70 V	97
alpha-Chlorotoluene		108
1,2-Dichlorobenzene		97
1,2,4-Trichlorobenzene	VI, CT.	101
Hexachlorobutadiene		104
Naphthalene		100

Container Type: NA - Not Applicable

::6		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 1303260A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032003 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 10:28 AM

Compound	%Recovery
Freon 12	99
Freon 114	103
Chloromethane	92
Vinyl Chloride	95
1,3-Butadiene	95
Bromomethane	96
Chloroethane	99
Freon 11	97
Ethanol	88
Freon 113	103
1,1-Dichloroethene	113
Acetone	94
2-Propanol	104
Carbon Disulfide	121
3-Chloropropene	121
Methylene Chloride	90
Methyl tert-butyl ether	114
trans-1,2-Dichloroethene	121
Hexane	109
1,1-Dichloroethane	94
2-Butanone (Methyl Ethyl Ketone)	104
cis-1,2-Dichloroethene	102
Tetrahydrofuran	99
Chloroform	98
1,1,1-Trichloroethane	102
Cyclohexane	115
Carbon Tetrachloride	100
2,2,4-Trimethylpentane	105
Benzene	99
1,2-Dichloroethane	95
Heptane	107
Trichloroethene	126
1,2-Dichloropropane	91
1,4-Dioxane	99
Bromodichloromethane	97
cis-1,3-Dichloropropene	104
4-Methyl-2-pentanone	106
Toluene	98
trans-1,3-Dichloropropene	111
1,1,2-Trichloroethane	102
Tetrachloroethene	106
2-Hexanone	118

Client Sample ID: LCS Lab ID#: 1303260A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032003 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 10:28 AM

Compound		%Recovery
Dibromochloromethane	9 2.	107
1,2-Dibromoethane (EDB)		105
Chlorobenzene		102
Ethyl Benzene		112
m,p-Xylene		118
o-Xylene	. 60	119
Styrene		126
Bromoform		106
Cumene		123
1,1,2,2-Tetrachloroethane		69 Q
Propylbenzene	CO O	111
4-Ethyltoluene		114
1,3,5-Trimethylbenzene		117
1,2,4-Trimethylbenzene		123
1,3-Dichlorobenzene		104
1,4-Dichlorobenzene	70.	103
alpha-Chlorotoluene		112
1,2-Dichlorobenzene		106
1,2,4-Trichlorobenzene		120
Hexachlorobutadiene		114
Naphthalene		75

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCSD Lab ID#: 1303260A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 10:51 AM

Freon 12 94 Freon 114 99 Chloromethane 90 Vinyl Chloride 95 1,3-Butadiene 97 Bromomethane 93 Chloroethane 93 Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 Methylene Chloride 87 Methylene Chloride 87 Methylere Chloride 87 Methyletr-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 10 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethane 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2-4-Trimethylpentane 104 H	Compound	%Recovery
Chloromethane 90 Vinyl Chloride 95 1.3-Butadiene 97 Bromomethane 93 Chloroethane 95 Freon 11 93 Ethanol 91 Freon 113 101 1.1-Dichiorethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Etrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Chloroformal 96 1,1-1-Trichloroethane 90 Heptane 104 Trichloroethene 105 1,2-Dichloroethane 90 H	Freon 12	94
Vinyl Chloride 95 1,3-Butadiene 97 Bromomethane 93 Chloroethane 95 Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichioroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methylene Chloride with Interce with In	Freon 114	99
1,3-Butadiene 97 Bromomethane 93 Chloroethane 95 Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methylene Chloride 91 1.1-Dichloroethane 91 1.2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 Cyclohexane 114 Carbon Tetrachloride 96 Cyclohexane 104 Cyclohexane <td>Chloromethane</td> <td>90</td>	Chloromethane	90
Bromomethane 93 Chloroethane 95 Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 105 Trichloroethane 90 Heptane 105 Trichloroethane 98 Bromodichloromethane 93	Vinyl Chloride	95
Chloroethane 95 Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 96 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 105 Trichloroethane 90 Heptane 105 Trichloroethane 93 cis-1,3-Dichloropropene 102	·	97
Freon 11 93 Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyle Erbuly ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 96 Cyclohexane 114 Carbon Tetrachloride 96 2,2-4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 96 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 105	Bromomethane	93
Ethanol 91 Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 tertanydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 104 Leptane 105 Trichloroethane 105 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 102 4-Methyl-2-pentanone 103 Toluene 96	Chloroethane	95
Freon 113 101 1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methyl ter-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Holuene 96 <td>Freon 11</td> <td>93</td>	Freon 11	93
1,1-Dichloroethene 112 Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 -Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105	Ethanol	91
Acetone 93 2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 98 Bromodichloromethane 98 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloroptopene 105 1,1,2-Trichloroeth	Freon 113	101
2-Propanol 102 Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 105 Trichloroethene 121 1,2-Dichloropropane 98 Bromodichloromethane 98 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 96 Tetrachloroethene 105 1,1,2-Trichloroethane 96 Tetrachloroethane </td <td>1,1-Dichloroethene</td> <td>112</td>	1,1-Dichloroethene	112
Carbon Disulfide 119 3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 105	Acetone	93
3-Chloropropene 119 Methylene Chloride 87 Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 98 Tetrachloroethane 98	2-Propanol	102
Methylene Chloride 87 Methyl tert-butyl ether 1111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Tichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 trans-1,3-Dichloropropene 105 trans-1,3-Dichloropropene 105 trans-1,3-Dichloropropene 98		119
Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trinchloroethane 96 Tetrachloroethane 98	3-Chloropropene	119
Methyl tert-butyl ether 111 trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 105 1,2-Dichloropropane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trinchloroethane 98 Tetrachloroethane 98	Methylene Chloride	87
trans-1,2-Dichloroethene 121 Hexane 110 1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 98 Bromodichloromethane 98 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 96 1,1,2-Trichloroethane 96 1,1,2-Trichloroethane 96 1,2-Trichloroethane 96		111
1,1-Dichloroethane 91 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 96 Tolluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 105		121
2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 105	Hexane	110
cis-1,2-Dichloroethene 103 Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 98 Bromodichloromethane 98 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 96 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 105	1,1-Dichloroethane	91
Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 105	2-Butanone (Methyl Ethyl Ketone)	102
Tetrahydrofuran 95 Chloroform 96 1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane 98 Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Tetrahydrofuran	95
Cyclohexane 114 Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Chloroform	96
Carbon Tetrachloride 96 2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	1,1,1-Trichloroethane	98
2,2,4-Trimethylpentane 104 Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Cyclohexane	114
Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Carbon Tetrachloride	96
Benzene 97 1,2-Dichloroethane 90 Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	2,2,4-Trimethylpentane	104
Heptane 105 Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Benzene	97
Trichloroethene 121 1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	1,2-Dichloroethane	90
1,2-Dichloropropane 90 1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Heptane	105
1,4-Dioxane 98 Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Trichloroethene	121
Bromodichloromethane 93 cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	1,2-Dichloropropane	90
cis-1,3-Dichloropropene 102 4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	1,4-Dioxane	98
4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	Bromodichloromethane	93
4-Methyl-2-pentanone 103 Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102	cis-1,3-Dichloropropene	102
Toluene 96 trans-1,3-Dichloropropene 105 1,1,2-Trichloroethane 98 Tetrachloroethene 102		103
1,1,2-Trichloroethane98Tetrachloroethene102		96
1,1,2-Trichloroethane98Tetrachloroethene102	trans-1,3-Dichloropropene	105
		98
2-Hexanone 113	Tetrachloroethene	102
	2-Hexanone	113

Client Sample ID: LCSD Lab ID#: 1303260A-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3032004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/20/13 10:51 AM

Compound		%Recovery
Dibromochloromethane		101
1,2-Dibromoethane (EDB)		100
Chlorobenzene		98
Ethyl Benzene	.03	108
m,p-Xylene		115
o-Xylene	.60	114
Styrene		120
Bromoform	()	103
Cumene		118
1,1,2,2-Tetrachloroethane	0)	66 Q
Propylbenzene	00	108
4-Ethyltoluene		110
1,3,5-Trimethylbenzene		112
1,2,4-Trimethylbenzene	V	119
1,3-Dichlorobenzene		101
1,4-Dichlorobenzene		100
alpha-Chlorotoluene		108
1,2-Dichlorobenzene		102
1,2,4-Trichlorobenzene		119
Hexachlorobutadiene		112
Naphthalene		74

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	98	70-130

CLIENT DETAILS

Contact

sch4p4(6) Perso

Client GOLDER ASSOCIATES PTY LTD
Address PO BOX 5823

Address PO BOX 5823 216 Draper St

CAIRNS

CAIRNS QLD 4870

Telephone 07 4054 8200 Facsimile 07 4054 8201

Email sch4p4(6) Personal information

Project 087673045 Kwikleen

Order Number CQ 3428 Samples 16 LABORATORY DETAILS

Telephone

Manager sch4p4(6)

Laboratory SGS Cairns Environmental Address Unit 2, 58 Comport St

Portsmith QLD 4870

+61 07 4035 5111

Facsimile +61 07 4035 5122

Email AU.Environmental.Cairns@sgs.com

 SGS Reference
 CE102827 R0

 Report Number
 0000005888

 Date Reported
 27 Feb 2013

 Date Received
 15 Feb 2013

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE115509.

SIGNATORIES .

sch4p4(6) Personal information

sch4p4(6) Persona

Senior Lab Technician

sch4p4(6) Personal information

sch4p4(6) Pe

Lab Manager

sch4p4(6) Personal information

sch4p4(6) Perso

Micro Supervisor

SGS Australia Pty Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

File B

Australia

t +61 7 4035 5111

f +61 7 4035 5122

www.au.sgs.com

Page 150 of 406 Member of the SGS Group

CE102827 R0

	San	nple Numbe	er CE102827.001	CE102827.002	CE102827.003	CE102827.004
		ample Matr		Soil	Soil	Soil
		Sample Dat ample Nam		13 Feb 2013 MW15CP 1.8-2.0	13 Feb 2013 MW16CP 2.2-2.4	13 Feb 2013 MW16CP 2.5-2.7
Parameter	Units	LOR	_			
VOC's in Soil Method: AN433/AN434						
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1
Chloromethane		1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1
	mg/kg	1	<1	<1	41	<1
Chloroethane	mg/kg				4	
Trichlorofluoromethane	mg/kg	0.1	<1	<1		<1
1,1-dichloroethene	mg/kg		<0.1	<0.1	<0.1	<0.1
lodomethane	mg/kg	5	<5	<5	<5	<5
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates	4					
Dibromofluoromethane (Surrogate)	%	-	89	85	103	81
d4-1,2-dichloroethane (Surrogate)	%	-	86	82	98	76
d8-toluene (Surrogate)	%	-	86	81	101	79
Bromofluorobenzene (Surrogate)	%	-	107	99	117	94
Full 8270 SVOC in Soil Method: AN420					'	
SVCH (Cl Benzenes, Hydrocarbons & VOCs)						
Pentachloroethane	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
	9/1/9	0.0	3.5	-5.5	-0.0	
Currogatos						
Surrogates						
d5-phenol (Surrogate)	%	-	94	99	91	91
d5-nitrobenzene (Surrogate)	%	-	92	98	92	88
2-fluorobiphenyl (Surrogate)	%	-	82	84	78	74
2,4,6-tribromophenol (Surrogate)	%	-	84	78	79	79
The state of the s	1					

d14-p-terphenyl (Surrogate)

88

CE102827 R0

	S	mple Number sample Matrix Sample Date Sample Name	Soil	CE102827.002 Soil 13 Feb 2013 MW15CP 1.8-2.0	CE102827.003 Soil 13 Feb 2013 MW16CP 2.2-2.4	CE102827.004 Soil 13 Feb 2013 MW16CP 2.5-2.7
Parameter	Units	LOR				
Moisture Content Method: AN002						
% Moisture	%	0.5	9.0	29	26	15

Published on Resources Dischedure Di

CE102827 R0

		nple Numbe		CE102827.006	CE102827.007	CE102827.00
		ample Matri		Soil	Soil	Soil
		Sample Dat ample Nam		13 Feb 2013 MW17CP 2.2-2.4	14 Feb 2013 MW18CP 2.3-2.4	14 Feb 2013 MW18CP 2.9-3
Parameter	Units	LOR				
VOC's in Soil Method: AN433/AN434						
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	<1	<1
Trichlorofluoromethane		1	<1	<1	41	<1
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
lodomethane	mg/kg	5	<5	<5	<5	<5
	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dichloromethane (Methylene chloride)	mg/kg			<0.1		<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1		<0.1	
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
	()- ·					
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	91	85	94	79
d4-1,2-dichloroethane (Surrogate)	%	-	89	80	90	76
d8-toluene (Surrogate)	%	-	89	83	90	75
Bromofluorobenzene (Surrogate)	%	-	104	101	107	93
Full 8270 SVOC in Soil Method: AN420						
SVCH (Cl Benzenes, Hydrocarbons & VOCs)						
Pentachloroethane	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
•						
Surrogates						
d5-phenol (Surrogate)	%	_	90	86	86	95
d5-nitrobenzene (Surrogate)	%	-	86	82	80	88
2-fluorobiphenyl (Surrogate)	%	-	80	76 73	74	82
2,4,6-tribromophenol (Surrogate)	%	-	76	73	72	75

d14-p-terphenyl (Surrogate)

CE102827 R0

	S	mple Number ample Matrix Sample Date Sample Name	Soil	CE102827.006 Soil 13 Feb 2013 MW17CP 2.2-2.4	CE102827.007 Soil 14 Feb 2013 MW18CP 2.3-2.4	CE102827.008 Soil 14 Feb 2013 MW18CP 2.9-3.0
Parameter	Units	LOR				
Moisture Content Method: AN002						
% Moisture	%	0.5	11	26	13	20

Published on Resources Disclosure Los

CE102827 R0

	s 	ample Number Sample Matrix Sample Date Sample Name	Soil 14 Feb 2013	CE102827.010 Soil 14 Feb 2013 MW19CP 1.0-1.1	CE102827.011 Soil 14 Feb 2013 MW19CP 2.9-3.0	CE102827.012 Soil 14 Feb 2013 MW19CP 3.3-3.4
Parameter	Units	LOR				
VOC's in Soil Method; AN433/AN434	Onito					
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	۲۱ کا	<1
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
lodomethane	mg/kg	5	<5	<5	<5	<5
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates	ing.iig	0.11	U. .	0	U. .	- C.I
Dibromofluoromethane (Surrogate)	%	-	96	96	79	90
d4-1,2-dichloroethane (Surrogate)	%	-	93	96	75	87
d8-toluene (Surrogate)	%	-	95	97	80	89
Bromofluorobenzene (Surrogate)	%	-	116	118	91	106
Full 8270 SVOC in Soil Method: AN420 SVCH (Cl Benzenes, Hydrocarbons & VOCs) Pentachloroethane Hexachlorobutadiene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Surrogates						
d5-phenol (Surrogate)	%	-	92	88	84	88
d5-nitrobenzene (Surrogate)	%	-	86	84	78	80
2-fluorobiphenyl (Surrogate)	%	-	80	70	72	74
2,4,6-tribromophenol (Surrogate)	%	-	76	76	75	80
	1					

d14-p-terphenyl (Surrogate)

CE102827 R0

	S	nple Numbe ample Matrix Sample Date ample Name	c Soil	CE102827.010 Soil 14 Feb 2013 MW19CP 1.0-1.1	CE102827.011 Soil 14 Feb 2013 MW19CP 2.9-3.0	CE102827.012 Soil 14 Feb 2013 MW19CP 3.3-3.4
Parameter	Units	LOR				
Moisture Content Method: AN002 % Moisture	%	0.5	17	17	18	16

Published on Resources Disclosure Los

CE102827 R0

		nple Numbe		CE102827.014	CE102827.015	CE102827.016
		ample Matrix Sample Date		Soil 14 Feb 2013	Soil 14 Feb 2013	Soil 14 Feb 2013
		ample Name		MW20CP 2.0-2.1	Dup01	TripBlank
		1.00				
Parameter	Units	LOR				
VOC's in Soil Method: AN433/AN434						
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
lodomethane	mg/kg	5	<5	< 5	<5	<5
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates	6-					
Dibromofluoromethane (Surrogate)	%	-	85	86	85	110
d4-1,2-dichloroethane (Surrogate)	%	-	82	83	84	105
d8-toluene (Surrogate)	%	-	83	86	84	109
Bromofluorobenzene (Surrogate)	%	-	101	105	104	122
Full 8270 SVOC in Soil Method: AN420 SVCH (Cl Benzenes, Hydrocarbons & VOCs) Pentachloroethane Hexachlorobutadiene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Surrogates	, 3 3	-	-	<u> </u>	·	
d5-phenol (Surrogate)	%	-	89	90	90	89
d5-nitrobenzene (Surrogate)	%	-	80	82	78	82
· · · · · · · · · · · · · · · · · · ·		1				
2-fluorobiphenyl (Surrogate)	%	-	80	74	72	80

d14-p-terphenyl (Surrogate)

78

80

CE102827 R0

	S	mple Number ample Matrix Sample Date Sample Name	Soil	CE102827.014 Soil 14 Feb 2013 MW20CP 2.0-2.1	CE102827.015 Soil 14 Feb 2013 Dup01	CE102827.016 Soil 14 Feb 2013 TripBlank
Parameter	Units	LOR				
Moisture Content Method: AN002						
% Moisture	%	0.5	10	25	22	<0.5

Published on Resources Disclosure Los

QC SUMMARY

CE102827 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

METHOD SUMMARY

CE102827 R0

METHOD

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN088

Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES .

Insufficient sample for analysis. IS

Sample listed, but not received. LNR This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

Limit of Reporting LOR

Raised or Lowered Limit of Reporting $\uparrow \downarrow$

Samples analysed as received.

Solid samples expressed on a dry weight basis.

on Parlincia **QFH** QC result is above the upper tolerance QFL QC result is below the lower tolerance The sample was not analysed for this analyte

> NVL Not Validated

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

LABORATORY DETAILS CLIENT DETAILS sch4p4(6) Pe sch4p4(6) Perso Manager Contact SGS Cairns Environmental GOLDER ASSOCIATES PTY LTD Client Laboratory Address PO BOX 5823 Address Unit 2, 58 Comport St 216 Draper St Portsmith QLD 4870 **CAIRNS** CAIRNS QLD 4870 07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile sch4p4@golder.com/sch4p4@golder.com.au AU.Environmental.Cairns@sgs.com Email Email 087673045 Kwikleen CE102844 R0 SGS Reference Project CQ 3432 0000005920 Report Number Order Number 28 Feb 2013 8 Samples Date Reported 18 Feb 2013 Date Received

COMMENTS

SIGNATORIES .

sch4p4(6) Persona

Operations Manager

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

ed of Pallices 100 VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE115465.

sch4p4(6) Personal information

sch4p4(6) Pers Lab Manager sch4p4(6) Personal information

sch4p4(6) Personal information

sch4p4(6) Persor Micro Supervisor

File B

Parameter	3 CE102844.004	CE102844.003	CE102844.002	CE102844.001	nple Numbe	Sam	
VOCS in Water Method: AN433/AN434 Met	Water			Water	ample Matri	Sa	
Parameter	18 Feb 2013 MW18CP						
VoCs in Water	WWWIOCF	WWWITCF	WWWTOCF	WWW 13CF	ample Name	30	
Part					LOR	Units	Parameter
22 echilosoprapare							VOCs in Water Method: AN433/AN434
Page							Fumigants
12 definitionspaces	<0.5	<0.5	<0.5	<0.5	0.5	ug/l	
Page 1991	<0.5						
Page 1.5 4.5	<0.5						
12-determonethrare (CDB)	<0.5						
Hallogenated Aliphatics Dichtoroethiane (CFC-12)	<0.5						
Definional Incomplement (CPC-12)	<0.5	40.5	<0.5	V 0.5	0.5	µg/L	1,2-dibromoethane (EDB)
Characteristeries							Halogenated Aliphatics
May chloride (Chloroethere)	<5	<5	<5	<5	5	μg/L	Dichlorodifluoromethane (CFC-12)
Bromomethane 1991 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	<5	<5	<5	<5	5	μg/L	Chloromethane
Biomonestaile	<0.3	<0.3	<0.3	<0.3	0.3		Vinyl chloride (Chloroethene)
Clair cellularies	<10	<10	<10	<10	10		Bromomethane
Trichtorollucomethane μgt. 1 41	<5	<5	<5	<5	5		Chloroethane
1,1 dichloroethene	<1						
Page 1.5 40.5 4	<0.5						
1.1 delchoroethane	<0.5						
Pigit 0.5 1.4 3.8 8.2	<0.5						,
Bromochioromethane µgtt 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5						<u> </u>
1.2 dichinorethane	<0.5						
1,1-trichloroethane	<0.5						
1,1-dichloropropene	<0.5						
Carbon tetrachforide							
Dibromomethane	<0.5			`			
Infinition cetherne (Trichloroethylene, TCE)	<0.5						
1.1.2-frichloroethane	<0.5						
1,3-dichloropropane	<0.5						
Tetrachloroethene (Perchloroethylene, PCE) руд. 0.5 7.0 14 37 1.1,1.2-letrachloroethane руд. 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.1,2.2-tetrachloroethane руд. 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.2,3-trichloropropane руд. 0.5 < 0.5 < 0.5 < 0.5 1.2,3-trichloropropane руд. 0.5 < 0.5 < 0.5 < 0.5 1.2,3-trichloropropane руд. 0.5 < 0.5 < 0.5 < 0.5 1.2,3-trichloropropane руд. 0.5 < 0.5 < 0.5 < 0.5 1.2,3-trichloropropane руд. 0.5 < 0.5 < 0.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5 < 0.5 1.5	<0.5						
1.1.1.2-tetrachloroethane µg/L 0.5 <0.5	<0.5						
1,1,2,2-tetrachloroethane	<0.5	37	14	7.0	0.5	μg/L	Tetrachloroethene (Perchloroethylene,PCE)
1,2,3-trichloropropane µg/L 0.5 <0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	1,1,1,2-tetrachloroethane
1.2-dibromo-3-chloropropane	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	1,1,2,2-tetrachloroethane
Hexachlorobutadiene μg/L 0.5 <0.5 <0.5 <0.5 Chlorobenzene μg/L 0.5 <0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	1,2,3-trichloropropane
Halogenated Aromatics Chlorobenzene	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	1,2-dibromo-3-chloropropane
Light Lig	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	Hexachlorobutadiene
Bromobenzene μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5							Halogenated Aromatics
Bromobenzene μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	Chlorobenzene
2-chlorotoluene μg/L 0.5 <0.5	<0.5						
4-chlorotoluene μg/L 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.	<0.5						
1,3-dichlorobenzene μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5						
1,4-dichlorobenzene μg/L 0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<0.5						
1,2-dichlorobenzene μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.3						
1,2,4-trichlorobenzene	<0.5						
1,2,3-trichlorobenzene μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5						
Surrogates Dibromofluoromethane (Surrogate)	<0.5						
Dibromofluoromethane (Surrogate)		~0.0	\U. U	~ U.U	0.5	ру/с	
104 104 107 108 109				1		I	
d8-toluene (Surrogate) % - 103 103 Bromofluorobenzene (Surrogate) % - 107 110 112 Totals Total Halogenated Hydrocarbons μg/L 10 - - -	98						
Bromofluorobenzene (Surrogate) % - 107 110 112 TotalS Total Halogenated Hydrocarbons μg/L 10 - - - -	104						
Totals Total Halogenated Hydrocarbons	102						
Total Halogenated Hydrocarbons μg/L 10	108	112	110	107	-	%	
	-	-	-	-	10	μg/L	
							Tribalamethanas
Trihalomethanes							
Chloroform (THM) μg/L 0.5 1.4 1.9 6.7	<0.5	6.7	1.9	1.4	0.5	μg/L	Chloroform (THM)
Bromodichloromethane (THM) μg/L 0.5 <0.5 <0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	Bromodichloromethane (THM)
Dibromochloromethane (THM) μg/L 0.5 <0.5 <0.5	<0.5		<0.5	<0.5		μg/L	
Bromoform (THM) 22-095 Page 1	162 of 406 ⁵	<0.5Page 16	<0.5	<0.5	File ^{0.5} B	μg/L	Bromoform (THM)22-095

Page 2 of 5 28-February-2013

		ample Numbe Sample Matrix		CE102844.006 Water	CE102844.007 Water	CE102844.008 Water
		Sample Date Sample Name		18 Feb 2013 MW20CP	18 Feb 2013 MWX01	18 Feb 2013 TB01
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	0.4	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	µg/L	0.5	<0.5	0.5	<0.5	<0.5
trans-1,2-dichloroethene	µg/L	0.5	<0.5	0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5 <0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	µg/L	0.5		21	<0.5	<0.5
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	µg/L	0.5	<0.5 <0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5 0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Carbon tetrachloride	μg/L	 				
Dibromomethane	μg/L	0.5	<0.5 <0.5	<0.5 38	<0.5 <0.5	<0.5
Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	42	<0.5	<0.5
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachioroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics						
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates Dibromofluoromethana (Surrogate)	%	_	98	97	100	88
Dibromofluoromethane (Surrogate)	%	-	103	103	108	104
d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	103	103	100	104
Bromofluorobenzene (Surrogate)	%	-	110	113	110	102
Totals	70		110	110	110	100
Total Halogenated Hydrocarbons	μg/L	10	-	-	-	-
	1					
Trihalomethanes		25			25	
Chloroform (THM)	μg/L	0.5	<0.5	3.0	<0.5	<0.5
	_					
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
	µg/L µg/L µg/L	0.5 0.5 File.5B	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5 Page 16	<0.5

Page 3 of 5 28-February-2013

QC SUMMARY

CE102844 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

METHOD SUMMARY

CE102844 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES .

Insufficient sample for analysis. IS

Sample listed, but not received. LNR

This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

Limit of Reporting LOR

Raised or Lowered Limit of Reporting $\uparrow \downarrow$

Samples analysed as received.

Solid samples expressed on a dry weight basis.

on Resultations of the Paris of

The sample was not analysed for this analyte

NVL Not Validated

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

CLIENT DETAILS LABORATORY DETAILS sch4p4(6) Persona sch4p4(6) P Contact Manager GOLDER ASSOCIATES PTY LTD SGS Cairns Environmental Client Laboratory Address PO BOX 5823 Address Unit 2, 58 Comport St 216 Draper St Portsmith QLD 4870 **CAIRNS** CAIRNS QLD 4870 07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile sch4p4 golder.com, sch4p@golder.com.au AU.Environmental.Cairns@sgs.com Email Email 087673045 Kwikleen CE102844 R0 SGS Reference Project CQ 3432 0000005920 Report Number Order Number 28 Feb 2013 8 Samples Date Reported 18 Feb 2013 Date Received

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

ed of Relike VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE115465.

SIGNATORIES sch4p4(6) Personal information sch4p4(6) Personal information sch4p4(6) Personal information sch4p4(6) Personal ir sch4p4(6) Person sch4p4(6) Pers **Operations Manager** Micro Supervisor Lab Manager

SGS Australia Ptv Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

Page 166 of 406
Member of the SGS Group File B

	Sar	nple Numbei	r CE102844.001	CE102844.002	CE102844.003	CE102844.004
		ample Matrix		Water	Water	Water
		Sample Date ample Name		18 Feb 2013 MW16CP	18 Feb 2013 MW17CP	18 Feb 2013 MW18CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	1.4	3.8	8.2	<0.5
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	5.8	7.3	19	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	7.0	14	37	<0.5
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics						
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	98	99	101	98
d4-1,2-dichloroethane (Surrogate)	%	-	104	104	107	104
d8-toluene (Surrogate)	%	-	103	103	103	102
Bromofluorobenzene (Surrogate)	%	-	107	110	112	108
Bromondorobenzene (Surrogate)						
Totals	μg/L	10	-	-	-	-
Totals Total Halogenated Hydrocarbons	µg/L	10	-	-	-	-
Totals Total Halogenated Hydrocarbons Trihalomethanes	µg/L	0.5	1.4	1.9	6.7	<0.5
Totals Total Halogenated Hydrocarbons Trihalomethanes Chloroform (THM)	1					
Totals Total Halogenated Hydrocarbons Trihalomethanes Chloroform (THM) Bromodichloromethane (THM) Dibromochioromethane (THM)	μg/L	0.5	1.4	1.9	6.7	<0.5

Page 2 of 5 28-February-2013

	S	nple Number ample Matrix Sample Date ample Name	Water 18 Feb 2013	CE102844.006 Water 18 Feb 2013 MW20CP	CE102844.007 Water 18 Feb 2013 MWX01	CE102844.008 Water 18 Feb 2013 TB01
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	0.4	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	<0.5	21	<0.5	<0.5
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L 	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane Total Tot	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	38	<0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	42	<0.5	<0.5
1,1,2,2-tetrachloroethane 1,1,2,2-tetrachloroethane	μg/L μg/L	0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics	10					
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	98	97	100	88
d4-1,2-dichloroethane (Surrogate)	%	-	103	103	108	104
d8-toluene (Surrogate)	%	-	102	103	100	102
Bromofluorobenzene (Surrogate)	%	-	110	113	110	109
Totals						
Total Halogenated Hydrocarbons	μg/L	10	-	-	-	-
Trihalomethanes						
Chloroform (THM)	μg/L	0.5	<0.5	3.0	<0.5	<0.5
Drawadishlaramathana (TUM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane (THM)	F5-					
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5

Page 3 of 5 28-February-2013

QC SUMMARY

CE102844 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loos

Published on Restlinct 2019

METHOD SUMMARY

CE102844 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES .

Insufficient sample for analysis. IS

Sample listed, but not received. LNR

This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

Limit of Reporting LOR

Raised or Lowered Limit of Reporting $\uparrow \downarrow$

Samples analysed as received.

Solid samples expressed on a dry weight basis.

on Resultations of the Paris of

The sample was not analysed for this analyte

NVL Not Validated

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB1304611** Page : 1 of 7

Client : GOLDER ASSOCIATES Laboratory : Environmental Division Brisbane

Contact sch4p4(6) Personal info Contact sch4p4(6) Personal info

Address 216 DRAPER STREET Address 2 Byth Street Stafford QLD Australia 4053

CAIRNS QLD, AUSTRALIA 4870

E-mail E-mail E-mail Sch4p4(6) Personal in @alsglobal.com

Telephone : +61 07 4054 8200 Telephone : +61 3552 8668
Facsimile : +61 07 4052 1546 Facsimile : +61 7 3352 3662

Project : 087673045 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : CQ3433

 C-O-C number
 : --- Date Samples Received
 : 22-FEB-2013

 Sampler
 : --- Issue Date
 : 04-MAR-2013

Site : Kwikleen

No. of samples received : 2

Quote number : EN/002/12 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

sch4p4(6) PeOrganic ChemistBrisbane Inorganicssch4p4(6) PeOrganic ChemistBrisbane Organics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 7

EB1304611 Work Order

GOLDER ASSOCIATES Client

Project 087673045

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

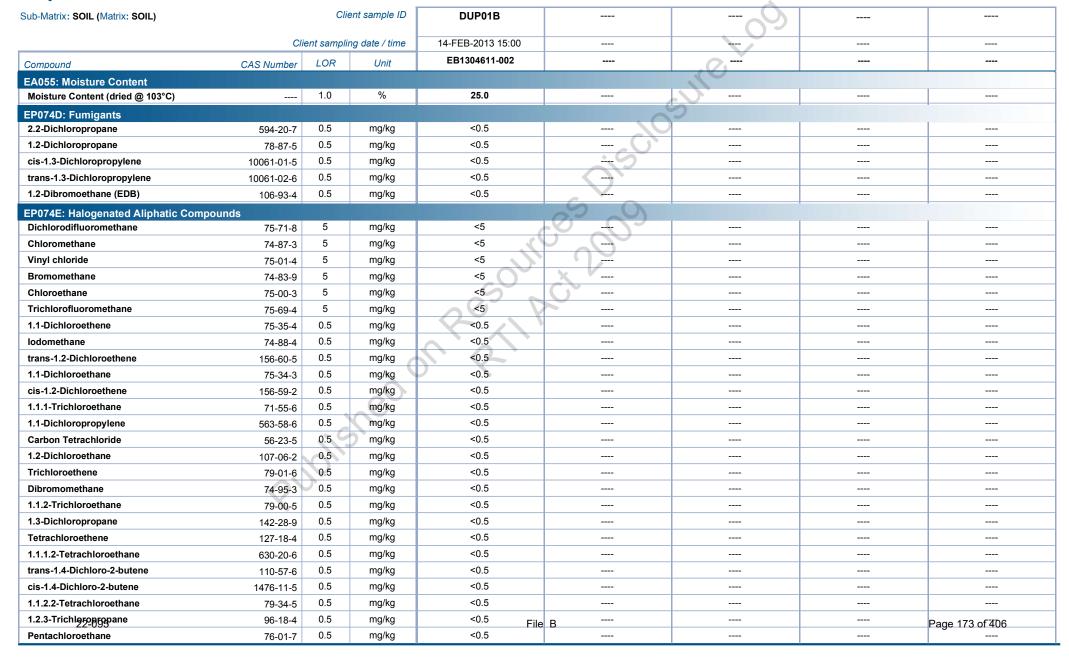
Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:


LOR = Limit of reporting

Jublished on Resources Diese 2009 ^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 7 Work Order : EB1304611

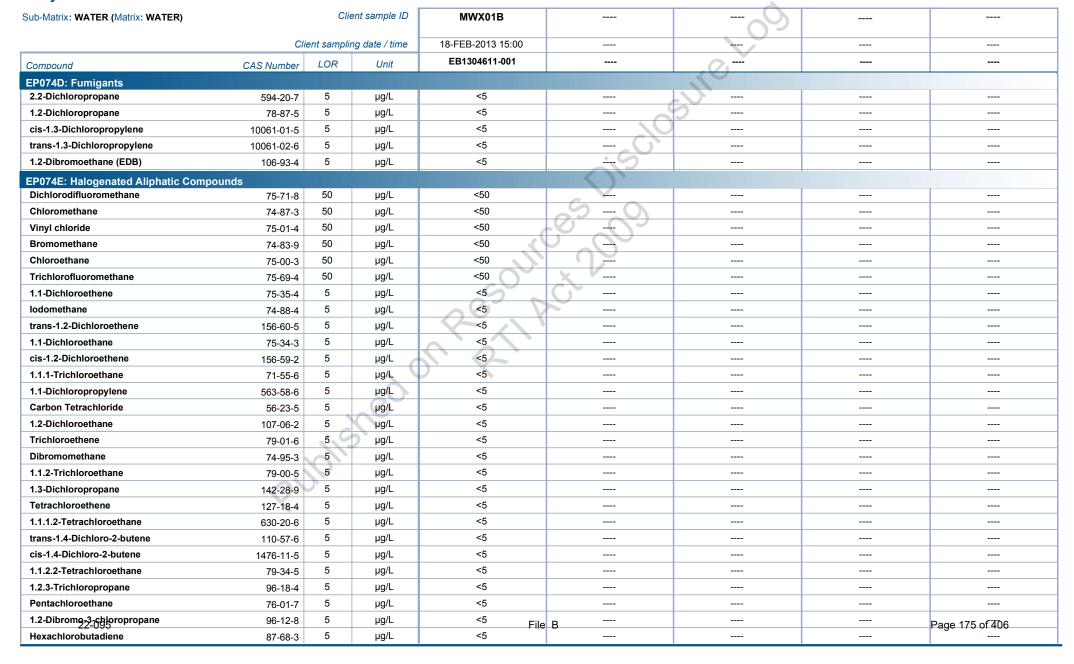
Client : GOLDER ASSOCIATES

Project : 087673045

Page : 4 of 7
Work Order : EB1304611

Client : GOLDER ASSOCIATES

Project : 087673045



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	DUP01B		0	
	Clie	ent samplii	ng date / time	14-FEB-2013 15:00		+->	
Compound	CAS Number	LOR	Unit	EB1304611-002		.01	
EP074E: Halogenated Aliphatic Compoun	ds - Continued						
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5			
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5		9	
EP074F: Halogenated Aromatic Compoun	nds						
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5			
Bromobenzene	108-86-1	0.5	mg/kg	<0.5	49		
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5			
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	<u> </u>		
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	(2)(0)		
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	-()		
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5			
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5			
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5			
EP074G: Trihalomethanes				00 6	U		
Chloroform	67-66-3	0.5	mg/kg	<0.5			
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5			
Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5			
Bromoform	75-25-2	0.5	mg/kg	<0.5			
EP074S: VOC Surrogates			7				
1.2-Dichloroethane-D4	17060-07-0	0.1	%	133			
Toluene-D8	2037-26-5	0.1	%	115			
4-Bromofluorobenzene	460-00-4	0.1	%	130			

Page : 5 of 7 Work Order : EB1304611

Client : GOLDER ASSOCIATES

Project : 087673045

Page : 6 of 7 Work Order : EB1304611

Client : GOLDER ASSOCIATES

Project : 087673045

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MWX01B		0	
	Cli	ent samplii	ng date / time	18-FEB-2013 15:00			
Compound	CAS Number	LOR	Unit	EB1304611-001		.01	
EP074E: Halogenated Aliphatic Compoun	ds - Continued						
EP074F: Halogenated Aromatic Compoun	ds					-0	
Chlorobenzene	108-90-7	5	μg/L	<5		—	
Bromobenzene	108-86-1	5	μg/L	<5			
2-Chlorotoluene	95-49-8	5	μg/L	<5	_C O'		
4-Chlorotoluene	106-43-4	5	μg/L	<5			
1.3-Dichlorobenzene	541-73-1	5	μg/L	<5			
1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	<u></u>		
1.2-Dichlorobenzene	95-50-1	5	μg/L	<5	(2 0)		
1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5			
1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5			
EP074G: Trihalomethanes							
Chloroform	67-66-3	5	μg/L	<5			
Bromodichloromethane	75-27-4	5	μg/L	<5	<u> </u>		
Dibromochloromethane	124-48-1	5	μg/L	<5			
Bromoform	75-25-2	5	μg/L	<5			
EP074S: VOC Surrogates				00			
1.2-Dichloroethane-D4	17060-07-0	0.1	%	102			
Toluene-D8	2037-26-5	0.1	%	95.5			
4-Bromofluorobenzene	460-00-4	0.1	%	94.6			

Page : 7 of 7 Work Order : EB1304611

Client : GOLDER ASSOCIATES

Project : 087673045

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP074S: VOC Surrogates				
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7	
Toluene-D8	2037-26-5	60.3	131.1	
4-Bromofluorobenzene	460-00-4	59.2	126.6	

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	66.1	137.9
Toluene-D8	2037-26-5	79.2	119.6
4-Bromofluorobenzene	460-00-4	74.2	118

CLIENT DETAILS -LABORATORY DETAILS sch4p4(6) sch4p4(6) Pers Contact Manager **GOLDER ASSOCIATES PTY LTD** Client Laboratory SGS Cairns Environmental Address PO BOX 5823 Address Unit 2, 58 Comport St 216 Draper St Portsmith QLD 4870 **CAIRNS** CAIRNS QLD 4870 07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile sch4p@golder.com sch4p@golder.com.au AU.Environmental.Cairns@sgs.com Email Email 087673045 Kwikleen - Water CE103195 R0 SGS Reference Project CQ 3304 0000006466 Report Number Order Number 2 20 Mar 2013 Samples Date Reported Date Received 12 Mar 2013

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE116016.

sch4p4(6) Personal information

SGS Australia Pty Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

File B

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

Page 178 of 406 Member of the SGS Group

Page

CE103195 R0

	Sample Number Sample Matrix			CE103195.002 Water
		Sample Dat		11 Mar 2013
	S	Sample Nam	e EB01	EB02
Parameter	Units	LOR		
VOCs in Water Method: AN433/AN434				
Halogenated Aliphatics				
	//	-		-E
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5
Chloromethane	µg/L	5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10
Chloroethane	μg/L	5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5
Iodomethane	μg/L	5	<5	<5
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5	<0.5
Dibromomethane	μg/L	0.5	<0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	μg/L	1	<1	<1
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5
Surrogates	13.			
Dibromofluoromethane (Surrogate)	%	-	106	105
d4-1,2-dichloroethane (Surrogate)	%	-	116	110
d8-toluene (Surrogate)	%	-	100	99
Bromofluorobenzene (Surrogate)	%	_	110	115
Other VOC Analytes in Water Method: AN433/AN434	,			
Pentachloroethane	μg/L	5	<5	<5
Surrogates				
Dibromofluoromethane (Surrogate)	%	-	99	78
d4-1,2-dichloroethane (Surrogate)	%	-	94	120
d8-toluene (Surrogate)	%	-	92	94
Bromofluorobenzene (Surrogate)	%	-	96	96

QC SUMMARY

CE103195 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

METHOD SUMMARY

CE103195 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

- This analysis is not covered by the scope of accreditation.
- Indicative data, theoretical holding time exceeded.
- Performed by outside laboratory.

on Resoluces Dischosure Local Dischosure QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Published on Reflinct 2009 **APPENDIX F**

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800 Asia + 86 21 6258 5522 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

Nices Dischos Ni

Publishedor

File B Page 184 of 406

ATTACHMENT G

Report on Potential Groundwater Impacts Associated with Sewer Failures, Kwikleen Dry Cleaners/Cairns Villa Caravan Park, Pease Street, Cairns, Golder Associates Pty Ltd, Ref. No. 087673045-041-R-Rev0, dated 14 June 2013.

22-095 File B

Kwikleen Dry Cleaners/Cairns
Villa Caravan Park, Pease
Street, Cairns

Submitted to:
Mr Sch4p4(6) Person
32-36 Peas

Submitted to:
Mr sch4p4(6) Person
32-36 Pease Street
Manunda QLD 4883

REPORT

Report Number.
Distribution:

1 Electronic Copy

087673045-041-R-Rev0

sch4p4(6) Personal in

Table of Contents

1.0	INTRO	INTRODUCTION1						
2.0	BACKGROUND							
	2.1	General	1					
	2.2	Nature of Contaminant	1					
	2.3	Potential Sources of Contamination	1					
	2.4	Investigations and Remediation Measures	2					
	2.5	Joint Experts Findings	2					
3.0	SEWEI	R INFRASTRUCTURE FAILURES						
4.0	DISCUSSION OF GROUNDWATER IMPACTS ASSOCIATED WITH SEWER FAILURES							
		LUSIONS						
	_	ATIONS						

FIGURES

Figure 1 Site Locality Plan

Figure 2 Groundwater Abstraction and Monitoring Locations

APPENDICES

APPENDIX A

Site Layout Plan (Reproduced from 087673045-005-Rev0)

APPENDIX B

Schematic of Sewer Layout (PDR Engineers)

APPENDIX C

Limitations

1.0 INTRODUCTION

Golder Associates Pty Ltd (Golder) was engaged by Mrsch4p4(6) Personal to conduct a review of groundwater contamination findings following discovery of sewer pipe failures on the former laundry and dry cleaner site at Pease Street, Cairns.

This report provides a summary of the available information and our opinion of the potential implications of discharges from sewer pipe in relation to groundwater contamination.

2.0 BACKGROUND

2.1 General

Kwikleen Dry Cleaners & Launderers formerly operated on a property comprised of Lot 1 on RP745758 and Lot 9 on RP735336. Dry cleaning operations were performed on the site from approximately 1994 until early 2011. This land will be referred to as the "Bungee land".

The Cairns Villa and Leisure Park is situated immediately adjacent to the Bungee land and comprises Lot 1 on RP742725. The site has operated as a caravan park and camping ground for more than 25 years. In this report this land will be referred to as the "caravan park site".

A locality plan showing the two sites is shown on Figure 1.

The presence of chlorinated solvents was detected in groundwater samples during an investigation of the caravan park site in 2007. The primary chlorinated solvents (contaminants of concern) identified in the groundwater were Tetrachloroethene (PCE) and its breakdown products – Trichloroethylene (TCE) and cis-1,2-dichloroethene (cis DCE).

2.2 Nature of Contaminant

PCE, TCE and 1,2-DCE are known as chlorinated alkenes. They are low boiling point, volatile solvents. PCE is widely used in the Dry Cleaning industry with approximately 50% of the overall demand for PCE being the dry cleanering industry. Approximately 80% of drycleaners use PCE as their primary cleaning agent.

The product Perklone was used in dry cleaning operations on the Bungee land. A review of the Material Safety Data Sheet for Perklone prepared by the manufacturer identifies that it is made up of greater than 99% PCE.

Site history investigations did not identify that TCE or 1,2-DCE had been used by the dry cleaner on the Bungee land or that PCE, TCE or 1,2-DCE had been used during the operation of the caravan park site. In the natural environment TCE and 1,2-DCE are known breakdown products of PCE. These breakdown products are produced via a process known as Reductive Chlorination. The TCE and 1,2-DCE observed in the groundwater samples from the Bungee land and the caravan park site are considered to be a result of the reductive chlorination of PCE.

2.3 Potential Sources of Contamination

Golder conducted inspections and interviews at the Bungee site in January 2008 aimed at assessing former and current site activities and identifying locations where PCE may have been released to the environment. The results of these inspections and interviews were presented in Golder report 087673045-005-Rev0. The identified areas of concern were marked on the plan reproduced in Appendix A.

During interviews conducted in January 2008, Golder Associates was informed that the drycleaning process employed utilised 90% of the drycleaning fluid (PCE), resulting in 10% waste product recovered in two waste streams:

- A drycleaning residue or sludge containing the majority of the spent drycleaning fluid; and
- Grey water (less than 2 Litres per wash cycle) which typically contained some dissolved phase PCE.

Both of these waste products were reported to be collected and placed in sludge storage drums at the rear of the building. Sludge drums were then collected by a trade waste contractor for offsite disposal.

In recent discussions, Mr sch4p4(6) If has indicated that the grey water was collected and disposed to sewer along with other wash water from washing machines. These waters are understood to have been held in a storage tank which discharged to the interceptor pit on the southern side of the building (see Figure 2). Had this information been clarified earlier then the sewer would also have been identified as a potential area of concern. This issue is discussed further in Section 4.

2.4 Investigations and Remediation Measures

A number of groundwater investigations and assessments were carried out by other parties in 2007-2008 and by Golder in June 2009 (refer to Golder Report 087673045-007-R-Rev0). These investigations identified solvent impacted groundwater migrating in an easterly direction from the Bungee site to the adjacent caravan park site. To mitigate this risk, it was initially recommended that groundwater pumping be conducted from monitoring well MW4KK in the south east corner of the Bungee site (where the highest PCE concentrations were detected in April 2009), see Figure 2.

The remediation measures were subsequently extended in 2009 to include groundwater extraction from an additional three wells on the caravan park site - MW11CP, MW12CP and MW5CP, see Figure 2. A product recovery trench was also installed in October 2010 along part of the eastern boundary of the Bungee site to extract impacted groundwater and to mitigate movement of impacted groundwater between the sites.

All extracted groundwater has been discharged to sewer via an interceptor pit on the Bungee site, see Figure 2. For the total solvent concentrations detected (i.e less than 5000 ug/L), it is understood that this water was suitable for sewer disposal under the site's trade waste permit.

Regular groundwater monitoring was conducted until early 2012, to track the progress of remedial works.

In March 2012, Golder conducted an internal review of the remediation options (refer Golder letter 087673045-028-L-Rev01). Whilst groundwater extraction had not been continuous (due to equipment malfunctions and damage/interference with the system), it is estimated that more than 3.5 million litres of groundwater had been extracted from the commencement of pumping up to March 2012. Relevant findings of the review are summarised below:

In December 2009 it was estimated that about 300 g of PCE was present in the groundwater on the caravan park site. Pumping from wells on the caravan park site (up to March 2012) had removed a total of about 1,000 g of PCE and pumping from caravan park and Bungee site wells and trench had removed about 3,200g of PCE. This information indicates that the source (or sources) of impact was much larger than originally assumed.

In light of the discovery of leaking sewer infrastructure, the above issue is discussed further in Section 4.

2.5 Joint Experts Findings

As part of subsequent legal proceedings between the caravan park site owner and Bungee, all available information was reviewed by Mr sch4p4(6) Pe (Golder) and Mr sch4p4(6) Persd (Birchwood Environmental) in June 2012 to produce a Joint Experts Report on the groundwater contamination detected on the caravan park site. A summary of agreed findings pertinent to this current report is provided below:

The source of the PCE, TCE and 1,2-DCE on both the Bungee and caravan park site is a result of the use, handling and/or storage of PCE on the Bungee Land. On release of the PCE to the environment it has migrated vertically through the soils (vadose zone) to the water table where it has been transported via the groundwater onto the caravan park site. During this process the PCE has undergone reductive chlorination to produce the breakdown products TCE and 1,2-DCE which have also been observed in the groundwater monitoring results on both the Bungee land and the caravan park site.

- The conclusion that the source of the PCE is on the Bungee land is supported by the fact that the highest groundwater PCE concentrations have been identified on the Bungee Land and the identified impact on the caravan park site is located down gradient (groundwater flow) of the Bungee Land.
- The location of the source of the impact on the Bungee Land has not been conclusively identified. There is no clear evidence to confirm that the detected contamination is related to a single or multiple release events but it is considered likely that the observed impact is the result of the accumulation of a series of events. Activities that may have contributed to the groundwater impact on the Bungee Land include:
 - Storage of PCE
 - Operational activities (drycleaning) using PCE
 - Handling, storage and/or disposal of PCE sludges (resulting from dry cleaning)
 - Misadventure (trespass on the Bungee site) leading to discharge of PCE or PCE sludge on the Bungee land
- Activities where PCE or PCE sludge could discharge directly to the ground surface represent the highest opportunity for impact to have occurred. Although a small amount of ongoing seepage through sealed surfaces could have also contributed to the groundwater contamination detected.
- It is agreed that historical handling and storage of PCE sludges on unsealed land at the rear (eastern end) of the Bungee land had a high potential to result in impact. In 2007, LeVert Environmental sampled dry cleaning sludge from the Bungee site which was found to contain 76,000mg/kg PCE. Photographs from this time also showed uncovered open trays placed on wooden pallets on bare earth prior to decanting into drums. Soil impacted with PCE was identified under the trays indicating that there had been spillage of PCE impacted materials onto the ground. It is accepted that PCE and waste storage practices at the dry cleaner were improved following these observations with the waste dry cleaning sludges stored in drums in a sealed, undercover bunded area before they are collected for off-site disposal.
- Based on the information currently available it is not possible to determine when the PCE contamination on the Bungee land commenced or how long contamination of the land continued. It is known that the contamination occurred before April 2007 and considering the contamination had to have been transported onto the caravan park land via groundwater and the PCE had commenced degradation to produce DCE and 1,2-DCE, it is likely that the initial contamination on the Bungee land occurred prior to 2007.

Again it is noted that, had drycleaning grey water disposal to sewer been known about at the time of the Joint Experts review, this would have been highlighted as an activity that may have contributed to groundwater impact. Statements in relation to the mechanism with the highest opportunity for impact would also need to be revised given this new information. See further discussion in Section 4.

3.0 SEWER INFRASTRUCTURE FAILURES

The interceptor pit on the Bungee site discharges to the Cairns Regional Council sewer system. A schematic of the pipework and manhole layout (based on Council records) is presented in Appendix B.

In April 2013, a plumber conducting repairs to a leaking water main reported water leaking out from under the former laundry building floor slab. Further investigation discovered that the sewer line connecting the interceptor pit to manhole T75/6 was blocked. The plumber attempted to clear the sewer line but was unsuccessful.

Cairns Regional Council was contacted. Council officers inspected manhole T75/6 and at that time cleaned out some gravel and tree roots from the line upstream of this manhole. Officers later returned, cleaned out more tree roots and replaced part of the 150mm diameter sewer line upstream of the manhole. It is understood that this revealed that sewer line upstream of the manhole had been completely blocked with tree roots that had infiltrated the sewer through pipe joints.

It is further understood that the penetrating tree roots had forced open the pipe joints and this may have allowed the opportunity for some leakage of water out of the pipework into the surrounding pipe trench.

Mr sch4p4(6) Pearranged for a CCTV inspection of the sewer pipeline (from the manhole to the end cap along the eastern site boundary) following the Council repairs. This inspection identified that the blockages had occurred at pipe joint locations about 0.2m and 2.7m south of manhole T75/6. It appears that the source of the roots was a large tree located east of the sewer line on the caravan park site. It is understood that Mr sch4p4(6) Pengaged an arborist to provide opinion on the possible age of the root blockage and that this has indicated the blockage may have been present for more than 10 years.

This CCTV inspection also indicated that the end cap at the southern end of this pipe was not in place. It is uncertain whether this cap had rusted out previously or had been dislodged during the sewer cleaning process. Blockages within the sewer pipe are likely to have resulted in backflow discharging from this faulty end cap into the surrounding ground.

In addition to the above, it is understood that the plumber also uncovered and repaired a broken section of pipe work about 0.2m from the interceptor pit. It has been speculated that cumulative hydraulic pressure in the sewer pipe as a result of the root blockage may have caused this failures; however, confirmation of this as a failure mechanism or the age of this breakage is beyond the expertise of Golder. Discharge of waste water from the Bungee site to the surrounding ground are likely to have resulted from this breakage point.

4.0 DISCUSSION OF GROUNDWATER IMPACTS ASSOCIATED WITH SEWER FAILURES

Previous assessments of the potential cause of groundwater impact had identified activities where PCE or PCE sludge could discharge directly to the ground surface as representing the highest opportunity for impact to have occurred. With new information relating to sewer line failures and the regular discharge of dry cleaning grey water during the operation of this site, this previous conclusion needs to be reviewed.

An updated review of all historical data indicated the following:

- Monitoring well MW4KK in the south east corner of the Bungee site has continually recorded the highest groundwater contaminant concentrations (on both the Bungee and caravan park sites) since its installation in 2009. This suggests that this well is located closest to the potential source of groundwater impact. This well is located hydraulically downgradient from the interceptor pit and adjacent to the identified sewer breakage. The high concentrations detected prior to implementation of groundwater extraction (and disposal via sewer) could indicate that grey water discharge from the Bungee site may have been leaking from the broken sewer pipe before 2009.
- The groundwater concentrations and contamination delineation investigations do not suggest that the root blockages within the pipeline upgradient of manhole T75/6 represent a major site of historical or ongoing contamination impact to groundwater. It is noted, however, that some grey water discharge was likely to have been occurring though opened pipe joints. Grey water containing contaminants may have impacted upon adjacent soils and groundwater.
- The groundwater concentrations and contamination delineation investigations are consistent with an impact source located in close proximity to the broken end cap on the 150mm diameter sewer line.. Whilst historical discharge of grey water from this end cap cannot be discounted, the limited historical groundwater monitoring data at locations hydraulically downgradient of this location do not provide conclusive evidence that this was occurring prior to the commencement of groundwater extraction and discharge to the sewer.
- Groundwater monitoring results collected since the commencement of groundwater extraction (and disposal via the sewer) are consistent with 'looping' of collected impacted groundwater discharging from sewer pipeline failures, particularly from the broken pipe adjacent to the interceptor pit and the broken end cap. Looping of collected impacted groundwater also explain the lack of progress by the extraction system to remove impacted groundwater on the caravan park site.

5.0 CONCLUSIONS

Based on the above findings there are three key conclusions:

- The historical discharge of dry cleaning grey water into the sewer system and failures within the sewer system up gradient of manhole T75/6 are considered to be an important (and previously unidentified) potential source of groundwater impact.
- Disposal of extracted groundwater into the sewer system has resulted in discharges from sewer failures. This is likely to have resulted in recirculation and redistribution of impacted groundwater.
- The main discharge points from the sewer appear to have been the broken pipe near the interceptor pit and the broken end cap at the southern end of the 150mm diameter pipe. Some lesser discharge is likely to have occurred at root intrusion sites where pipe joints have opened. Although root blockages will have resulted in "back up" within the sewer pipe and therefore lead to increased discharge from the other failure points within the sewer system.

6.0 LIMITATIONS

Your attention is drawn to the document "Limitations", which is included in Appendix C of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information
sch4p4(6) Personal

Senior Environmental Engineer

sch4p4(6) Personal information
sch4p4(6) Perso

Principal Environmental Engineer

CMC/PKS/hlb

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

j:\env\2008\087673045 - kwikleen dry cleaners, pease st\correspondence out\087673045-41-r-rev0 sewer failure.docx



SITE INFRASTRUCTURE ASSESSMENT

HOSPITALITY SERVICES

SITE LOCALITY PLAN

LEGEND

Digital Cadastral Data

NOTES

COPYRIGHT

- L Base map data copyright Mapinfo
 Australia Pty Ltd.
 2. DCDB copyright The State of
 Queensland (Department of Natural
 Resources, Mines and Water) 213.
 Aerial photography copyright The
 State of Queensland (Department of
 Natural Resources,
 Mines and Water) 2006.

SCALE (at A3) 1:1,500 DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: 08767
DATE: 10 MA
DRAWN: BAG
CHECKED: PKS 087673045-041-R 10 MAY 2013

FIGURE 1

Page 193 of 406

SITE INFRASTRUCTURE ASSESSMENT

HOSPITALITY SERVICES

GROUNDWATER ABSTRACTION & MONITORING LOCATIONS

LEGEND

CaravanPark

Extraction Sump

Extraction Well

NOTES

COPYRIGHT

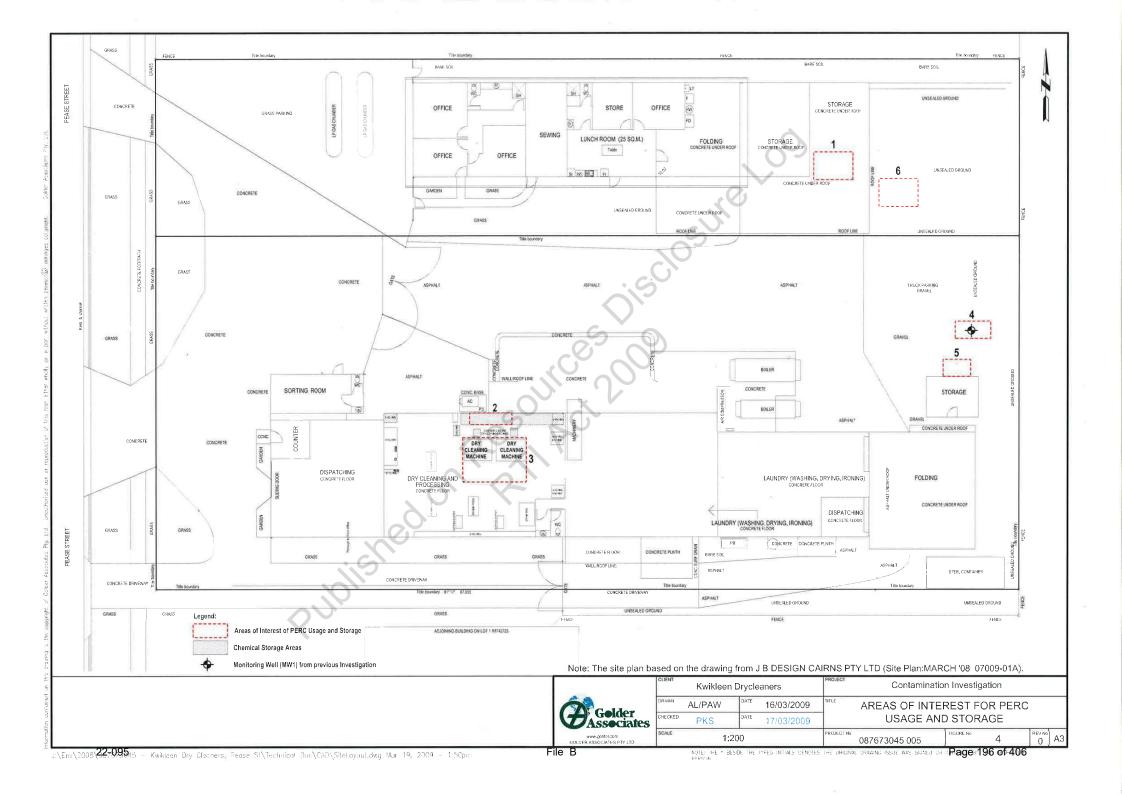
L Base may data copyright Mapinfo
Australia Pty Ltd.
2 DCDB copyright The State of
Queensland (Department of Natural
Resources, Mines and Water) 2011.
3. Aerial photography copyright The
State of Queensland (Department of
Natural Resources,
Mines and Water) 2006.

SCALE (at A3) 1:500

DATUM GDA 94, PROJECTION MGA Zone 55

087673045-041-R 10 MAY 2013 PROJECT: DATE: DRAWN: BAG CHECKED: PKS

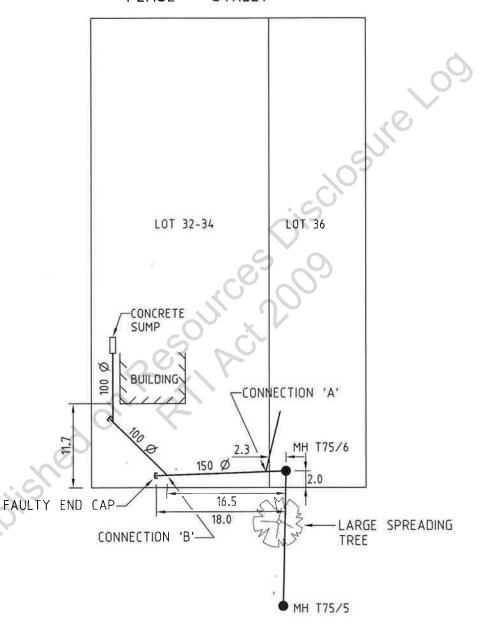
FIGURE 2



Page 194 of 406

APPENDIX A

Published on Reflict Site Layout Plan (Reproduced from 087673045-005-Rev0)


APPENDIX B

· Enginee **Schematic of Sewer Layout (PDR Engineers)**

PEASE STREET

sch4p4(6) Personal informa

SEWER DETAILS AT 32/34 PEASE STREET MANUNDA

13285-SEW01

Level 1, 258 Hadgrave Road, Cairos PO Box 2551 CARNS OLD 4870 Ph 8871 4551 5559 Face (87) 455 5455 Easil: decomo@pdresgineers.com.siu ALA 22 No 1941 54

Published on Resources Disclosure Look Published on Real Lock 2009 **APPENDIX C**

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800 Asia + 86 21 6258 5522 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

Jirces Dischosure Lot

Jubiished of

File B Page 201 of 406

ATTACHMENT H

Amended Boundary Groundwater Monitoring September 2013, Golder Associates Pty Ltd, Ref. No. Letter 087673045-045-L-Rev0, dated 14 October 2013.

22-095 File B

14 October 2013

Project No. 087673045-045-L-Rev0

sch4p4(6) Persona Hospitality Services

~Transmission via email: sch@laundryqld.com.au~

AMENDED BOUNDARY GROUNDWATER MONITORING SEPTEMBER 2013.

Following Golder Proposal No. 087673045-044-L-Rev0 issued on 11 September 2013, please find herewith the results and interpretation of the recent groundwater monitoring event along the proposed excised boundary groundwater wells as per the Third Party Reviewer (TPR) request.

The following works were carried out:

- A groundwater sampling and analysis event was carried out on groundwater wells MWCP1, MWCP4, MWCP6, MWCP16. MWCP17 and MWCP18.
- Samples from well were analysed for volatile organic compounds.
- The sampling round included a single QA/QC field sample.
- A short letter report (this document) was prepared to detail and discuss the findings of this monitoring round.

Field Work

The selected wells were purged on 19 September 2013 and allowed to stabilise before sampling. The wells were then sampled by an experienced environmental scientist using bottom loading (Double Check Valve) disposable bailers. Each well was sampled using a new disposable bailer to ensure no cross contamination between sample locations. The samples were transferred into NATA accredited laboratory supplied sample containers and packed into an esky for transport to the laboratory (SGS).

A duplicate sample was also taken at MWCP18 for QA/QC purposes. The water samples were sent for analyses of volatile organic compounds under chain of custody conditions.

Results

The Laboratory Certificate of Analysis is attached. For the purpose of this report the previously identified contaminants of concern Trichloroethylene (TCE), Perchloroethylene (PCE) and are the focus of the following sections. The results are summarised below:

Table 1: September 2013 Groundwater Monitoring Results

Monitoring Location	TCE (μg/l)	PCE (μg/l)	cis-1,2- dichloroethene (µg/l)
MW1CP	170	42	390
MW4CP	2.0	<0.5	2.3
MW6CP	<0.5	3.0	25
MW16CP	180	12	320
MW17CP	210	100	89
MW18CP	0.9	<0.5	2.0

Golder Associates Pty Ltd

216 Draper Street, Cairns, Queensland 4870, Australia (PO Box 5823, Cairns QLD 4870)
Tel: +61 7 4054 8200 Fax: +61 7 4054 8201 www.golder.com

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

22-095 File B Page 203 of 406

Discussion

Concentrations of contaminants of concern recorded in water samples from MW4CP, MW6CP and MW18CP were close to or below the laboratory limits of reporting. These results are similar to the results of previously monitoring rounds at these locations and are not considered to represent a change or deterioration of conditions at these locations.

TCE and PCE concentrations in the water sample from MW1CP were higher than the previous monitoring round July 2012 but within the range of concentrations previously recorded at this location since 2007. Given the direction of groundwater flow (generally in an easterly trending direction), and in view of the historical fluctuations recorded at this location, this result is not considered to warrant a review of the western subdivision boundary.

The PCE concentration in the water sampled from MW16CP has remained relatively consistent since the previous round of sampling in February 2013. The TCE concentration at this location has increased by a factor of about 25. The PCE concentration in the water sampled from MW17CP has increased by a factor of about 3 since the previous round of sampling in February 2013. The TCE concentration at this location has increased by a factor of about 10.

The changes in concentrations detected in water samples from MW16CP and MW17CP may be attributed to either:

- The migration of impacted groundwater; or
- Fluctuations associated with sampling at the very low detection levels (parts per billion) variations of the magnitude observed are within the bounds of what may be expected between sampling rounds.

In order to address the uncertainty associated with these recent results at MW16CP and MW17CP, and to confirm subdivision boundary locations, the following recommendations are made:

- A bottom loading pump should be installed at MWCP14 to collect impacted water detected at this previously identified "hotspot" and intercept possible migration of impact groundwater.
- Soil gas sampling and analysis be conducted from SVW16 and SVW17 (located adjacent to MW16CP and MW17CP, respectively) to confirm that the concentrations of PCE and TCE remain within acceptable limits at these locations.

Scheduling of Future Works

The following schedule is proposed to implement the above recommendations, pending approval of a cost proposal to be presented to Hospitality Services.

Table 2: Proposed Schedule of Tasks

Task	Time Frame
Installation of pump infrastructure into MW14CP	By 18 th October
Sampling of Gas Wells	By 5 th November (based on current availability of equipment and personnel)
Receipt of Laboratory Analysis	By 22 nd November (subject to laboratory turn around)
Presentation of results and issue of findings	By 30 th November (subject to receipt of laboratory results)

Limitations

Your attention is drawn to the document "Limitations", which is attached to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Regards,

Golder Associates Pty Ltd

sch4p4(6) Personal information

sch4p4(6) Personal

Senior Environmental Engineer

CMC/PKS/hlb

sch4p4(6) Personal information

sch4p4(6) Pers

Principal Environmental Engineer

Attachments: Laboratory Certificate of Analysis

Figure 1 - September 2013 GW Sampling Locations

Limitations

Published on Reflices Discharge \\cns1-s-file02\jobs\env\2008\087673045 - \text{kwikleen dry cleaners, pease st\correspondence out\087673045-045-\rev0 boundary gw sampling.docx

3/3

ANALYTICAL REPORT

Contact Sch4p4(6) Pers LABORATORY DETAILS Sch4p4(6) Pers Manager Sch4p4(6)

Client GOLDER ASSOCIATES PTY LTD Laboratory SGS Cairns Environmental

PO BOX 5823 Address Unit 2, 58 Comport St 216 Draper St Portsmith QLD 4870 CAIRNS

CAIRNS QLD 4870

 Telephone
 07 4054 8200
 Telephone
 +61 07 4035 5111

 Facsimile
 07 4054 8201
 Facsimile
 +61 07 4035 5122

Email sch4p@golder.com Email AU.Environmental.Cairns@sgs.com

 Project
 087673045 Kwikleen
 SGS Reference
 CE105952 R0

 Order Number
 MQ8775
 Report Number
 0000011183

 Samples
 7
 Date Reported
 30 Sep 2013

 Date Received
 19 Sep 2013

COMMENTS

Address

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE120927.

sch4p4(6) Personal information

SIGNATORIES

sch4p4(6) Personal information

sch4p4(6) Personal info

Operations Manager Manager Northern QLD

sch4p4(6) Personal information

sch4p4(6) Persor

Micro Supervisor / Quality Co-ordinator

SGS Australia Pty Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

File B

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

Page 206 of 406 Member of the SGS Group

ANALYTICAL REPORT

CE105952 R0

		nple Number		CE105952.002	CE105952.003	CE105952.004
		ample Matrix Sample Date ample Name	19 Sep 2013	Water 19 Sep 2013 MW4CP	Water 19 Sep 2013 MW6CP	Water 19 Sep 2013 MW16CP
	J	ample Name	WWWICF	WWW	WWWOCF	WWWIGGF
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	6	5	6
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	1.1
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	1,1	<0.5	<0.5	3.3
trans-1,2-dichloroethene	μg/L	0.5	3.0	<0.5	<0.5	4.6
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	390	2.3	25	320
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	170	2.0	<0.5	180
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	42	<0.5	3.0	12
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L 	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics						
Chlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenz ene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	109	106	116	107
d4-1,2-dichloroethane (Surrogate)	%	-	110	109	120	109
d8-toluene (Surrogate)	%	-	102	97	99	101
Bromofluorobenz ene (Surrogate)	%	-	101	115	118	125
Trihalomethanes						
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane (THM)	μg/L	0.5	1.8	<0.5	<0.5	1.9
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromoform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5

ANALYTICAL REPORT

CE105952 R0

		nple Numbe		CE105952.006	CE105952.007
		ample Matri Sample Dat		Water 19 Sep 2013	Water 19 Sep 2013
		ample Nam		MW18CP	DUP
Parameter	Units	LOR			
VOCs in Water Method: AN433/AN434					
Fumigants					
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics					
		-	J.E	-E	- F
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5 <5	<5	<5 <5
Chloromethane Vinul phorido (Chlorophono)	μg/L	0.3	1.3	<5 <0.3	<0.3
Vinyl chloride (Chloroethene) Bromomethane	μg/L	10	1.3 <10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5
Trichlorofluoromethane	µg/L	1	<1	<1	<1
1,1-dichloroethene	µg/L	0.5	2.4	<0.5	<0.5
trans-1,2-dichloroethene	μg/L μg/L	0.5	2.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	89	2.0	2.2
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	210	0.9	1.1
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	µg/L	0.5	1.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	100	<0.5	<0.5
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5
Halogenated Aromatics					
Chlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5
Bromobenz ene	μg/L μg/L	0.5	<0.5	<0.5	<0.5
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenz ene	μg/L	0.5	<0.5	<0.5	<0.5
	F-0				
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	104	103	109
d4-1,2-dichloroethane (Surrogate)	%	-	107	109	112
d8-toluene (Surrogate)	%	-	111	99	99
Bromofluorobenz ene (Surrogate)	%	-	112	115	117
Trihalomethanes					
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5
Bromoform (THM)	μg/L	0.5	<0.5	<0.5	<0.5

QC SUMMARY

CE105952 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loos

Published on Restlinct 2019

METHOD SUMMARY

CE105952 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009 QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

DELINEATION INVESTIGATIONS

HOSPITALITY SERVICES

MONITORING LOCATIONS SEPTEMBER 2013

LEGEND

NOTES Approximate Area To Be boundaries are approximate Excised

Excised

COPYRIGHT

Soil Gas Well Locations

1. Base map data copyright Mapinto
Australia Pty Ltd.

Groundwater Monitoring 2 DCDB copyright The State of
Queensland (Department of Natural
Australia South Mines and Ptyline 1011.

3 State of Queensland (Department of
State of Queensland (Department of
Natural Resources.

Mines and Water) 2006.

SCALE (at A3) 1:500
DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: 087673045-045-L
DATE: 14 OCT 2013
DRAWN: BAG
CHECKED: CC

FIGURE 1

22-095 File B Page 211 of 406

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

ATTACHMENT I

Soil Vapour Monitoring at SVW16 and SVW17 November 2013, Pease St. Caravan Park, Golder Associates Pty Ltd, Ref. No. Letter 087673045-048-L-Rev0, dated 25 November 2013.

22-095 File B

25 November 2013

Project No. 087673045-048-L-Rev0

sch4p4(6) Personal ii

Hospitality Services

~Transmission via email: sch4@laundrygld.com.au~

SOIL VAPOUR MONITORING AT SVW16 AND SVW17 NOVEMBER 2013, PEASE ST. CARAVAN PARK.

Dear sch4p4

Further to our previous correspondence 087673045-048-L-Rev0 and recommendations dated 14 October 2013 please find herewith the results from the latest round of soil vapour sampling carried out at monitoring locations SVW16 and SVW17 within the Pease St. Caravan Park Site.

Scope of Works

Further to groundwater monitoring carried out at various groundwater boundary wells on 19 September, it was proposed to carry out further soil vapour monitoring at SVW16 and SVW17. The following tasks were completed:

The soil vapour monitoring wells were sampled on 6 November 2013. The procedure for sampling VOCs using evacuated canisters, and for the subsequent analysis, is described in USEPA Method TO-15. The method involves the collection of whole air samples in passivated electropolished stainless steel canisters. The VOCs are subsequently separated by gas chromatography (GC), and measured by mass selective (MS) detector or multi-detector techniques.

SUMMA canister sampling was conducted in accordance with Golder Technical Procedure TP13 'Soil Gas Bore Sampling' as outlined below:

- The sampling train consisted of PTFE tubing, a glass impinger (moisture trap), flow controller and a 1 Litre SUMMA canister:
- The soil vapour bore and sampling train (PTFE tubing and glass moisture trap) were purged with a volume equal to three times the total bore and sampling train volume, immediately prior to sample collection;
- Samples were collected in low volume (1 litre) SUMMA canisters to reduce the possibility of atmospheric breakthrough and a false negative result;
- SUMMA canisters were equipped with a flow restricting orifice and a vacuum gauge to enable sampling over a nominal one hour period, again minimising the potential for atmospheric breakthrough; and
- A shroud and tracer gas was used during collection of all primary soil vapour samples.

SUMMA canister sampling was carried out in accordance with Golder Test Method No. C9 "Canister (Evacuated) Sampling for VOC and Reduced Sulphur Compounds: In Ambient Air and Source Emissions".

Sample analysis was conducted by Eurofins Air Toxics Ltd., in accordance with modified USEPA Method TO15. Eurofins Air Toxics Ltd is accredited by NELAP/Florida Department of Health for analyses of VOCs by the described method (Laboratory Accreditation No. E87680). Laboratory certificates of analysis are attached at the end of this document.

Results

The results for Trichloroethene and Tetrachloroethene are provided in Table 1 below against the previously agreed guideline criteria. Results in red indicate exceedances.

Table 1: Results for November 2013 Soil Vapour Monitoring

	Assessment Value (µg/m³)	SVW16 (µg/m³)	SVW17 (µg/m³)	Dup (SVW17) (μg/m³)
Trichloroethene (TCE)	100	760	240	300
Tetrachloroethene (PCE)	2000	220	1800	2400

Discussion

Given the above results, a detailed report has not been prepared. Further consideration of these results in relation to the proposed boundary will be needed.

Limitations

Your attention is drawn to the document "Limitations", which is attached to this letter report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Yours faithfully
Golder Associates Pty Ltd

sch4p4(6) Personal information

sch4p4(6) Personal
Senior Environmental Engineer

Senior Environmental Engineer

CMC/PKS/hlb

Attachments: Eurofins Airtoxics Certificate of Analysis Limitations

\\cns1-s-file02\jobs\env\2008\087673045 - kwikleen dry cleaners, pease st\correspondence out\087673045-048-i-rev0 soil vapour sampling results nov 2013.docx

22-095 File B2/2

11/22/2013

sch4p4(6) Personal informat

Golder Associates, Australia 216 Draper Street

Cairns, Queensland 4870

Project Name: Kwikleen Project #: 087673045 Workorder #: 1311157A

Dear sch4p4(6) Personal inform

The following report includes the data for the above referenced project for sample(s) received on 11/8/2013 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal information if you have any questions regarding the data in this report.

Regards,

sch4p4(6) Personal information

sch4p4(6) Personal info

Project Manager

A Eurofins Lancaster Laboratories Company

DATE COMPLETED:

CERTIFIED BY:

WORK ORDER #: 1311157A

Work Order Summary

CLIENT: sch4p4(6) Personal infor BILL TO: Accounts Payable

Golder Associates, Australia Golder Associates, Australia

216 Draper Street PO BOX 6079

Cairns, Queensland 4870 Hawthorne, Australia 3122

PHONE: +61 7 4054 8200 P.O. # MO8810

11/22/2013

FAX: +61 7 4054 8201 PROJECT # 087673045 Kwikleen

DATE RECEIVED: 11/08/2013 CONTACT: sch4p4(6) Personal

		10	RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVW 17	TO-15	6.1 "Hg	14.9 psi
02A	SVW 16	TO-15	10 "Hg	15 psi
03A	FB 01	TO-15	9 "Hg	15 psi
04A	DUP 01	TO-15	9 "Hg	15 psi
05A	Lab Blank	TO-15	NA	NA
05B	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
06B	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA
07B	LCS	TO-15	NA	NA
07BB	LCSD	TO-15	NA	NA
	olished	01 6		

sch4p4(6) Personal information

DATE: 11/22/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

ilac-MR/

Page 2 of 29

LABORATORY NARRATIVE EPA Method TO-15 Golder Associates, Australia Workorder# 1311157A

Four 1 Liter Summa Canister samples were received on November 08, 2013. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Due to the linear calibration range of the instrument, the reporting limit for Ethanol was raised from 2.0ppbv to 5.0ppbv.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW 17 Lab ID#: 1311157A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.1	14	9.5	27
Acetone	13	20	30	48
Hexane	1.3	2.3	4.4	8.1
2-Butanone (Methyl Ethyl Ketone)	5.1	7.8	15	23
Tetrahydrofuran	1.3	3.6	3.7	11
Trichloroethene	1.3	46	6.8	240
Toluene	1.3	16	4.8	58
Tetrachloroethene	1.3	270	8.6	1800
m,p-Xylene	1.3	3.6	5.5	16
Client Sample ID: SVW 16	S ~ C			
Lab ID#: 1311157A-02A	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(nnhy)	(nnhv)	(ug/m3)	(ug/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	15	25	36	60
cis-1,2-Dichloroethene	1.5	12	6.0	48
Chloroform	1.5	14	7.4	68
Trichloroethene	1.5	140	8.1	760
Toluene	1.5	5.7	5.7	21
Tetrachloroethene	1.5	32	10	220
m,p-Xylene	1.5	3.0	6.6	13

Client Sample ID: FB 01 Lab ID#: 1311157A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Acetone	14	17	34	40	

Client Sample ID: DUP 01 Lab ID#: 1311157A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: DUP 01 Lab ID#: 1311157A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	1.4	55	7.7	300
Toluene	1.4	3.7	5.4	14
Tetrachloroethene	1.4	350	9.8	2400
m,p-Xylene	1.4	1.40	6.2	6.2
	Olices	009		
	Resolitices			
neg or				
OUDISI				
X				

Client Sample ID: SVW 17 Lab ID#: 1311157A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112019 Date of Collection: 11/6/13 9:00:00 AM Dil. Factor: Date of Analysis: 11/21/13 04:33 PM 2.53 Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) 1.3 Not Detected 6.2 Not Detected Freon 12 Freon 114 1.3 Not Detected 8.8 Not Detected 26 Chloromethane 13 Not Detected Not Detected 1.3 Not Detected 3.2 Not Detected Vinyl Chloride 1,3-Butadiene 1.3 Not Detected 2.8 Not Detected 13 Bromomethane Not Detected 49 Not Detected 5.1 Not Detected 13 Not Detected Chloroethane Freon 11 1.3 Not Detected 7.1 Not Detected Ethanol 5.1 14 9.5 27 1.3 Not Detected 9.7 Not Detected Freon 113 1.3 Not Detected 5.0 Not Detected 1,1-Dichloroethene Acetone 13 20 30 48 2-Propanol 5.1 Not Detected 12 Not Detected Carbon Disulfide 5.1 Not Detected 16 Not Detected 5.1 Not Detected 16 Not Detected 3-Chloropropene 13 Methylene Chloride Not Detected 44 Not Detected Methyl tert-butyl ether 1.3 Not Detected 4.6 Not Detected trans-1,2-Dichloroethene 1.3 Not Detected 5.0 Not Detected 1.3 2.3 4.4 8.1 Hexane Not Detected Not Detected 1,1-Dichloroethane 1.3 5.1 2-Butanone (Methyl Ethyl Ketone) 5.1 7.8 15 23 cis-1,2-Dichloroethene 1.3 Not Detected 5.0 Not Detected Tetrahydrofuran 1.3 3.6 3.7 11 1.3 Not Detected Not Detected Chloroform 6.2 1,1,1-Trichloroethane 1.3 Not Detected 6.9 Not Detected 1.3 Not Detected 4.4 Not Detected Cyclohexane 1.3 8.0 Not Detected Carbon Tetrachloride Not Detected 2,2,4-Trimethylpentane 1.3 Not Detected 5.9 Not Detected 1.3 Not Detected 4.0 Not Detected Benzene 1.3 Not Detected 5.1 Not Detected 1,2-Dichloroethane 1.3 Not Detected 5.2 Not Detected Heptane Trichloroethene 1.3 46 6.8 240 1,2-Dichloropropane 1.3 Not Detected 5.8 Not Detected 5.1 Not Detected 18 Not Detected 1.4-Dioxane Bromodichloromethane 1.3 Not Detected 8.5 Not Detected 1.3 Not Detected Not Detected cis-1,3-Dichloropropene 5.7 1.3 Not Detected 5.2 Not Detected 4-Methyl-2-pentanone 1.3 16 4.8 Toluene 1.3 Not Detected 5.7 Not Detected trans-1,3-Dichloropropene 1.3 Not Detected 6.9 Not Detected 1,1,2-Trichloroethane Tetrachloroethene 1.3 270 8.6 1800 2-Hexanone 5.1 Not Detected 21 Not Detected

Client Sample ID: SVW 17 Lab ID#: 1311157A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112019 2.53	Date of Collection: 11/6/13 9:00:00 AM Date of Analysis: 11/21/13 04:33 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	.110	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	3.6	5.5	16
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	Not Detected	6.2	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.2	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: SVW 16 Lab ID#: 1311157A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112020 3.03	Date of Collection: 11/6/13 10:30:00 AM Date of Analysis: 11/21/13 05:04 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	Not Detected	7.5	Not Detected
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.5	Not Detected
Ethanol	6.1	Not Detected	11	Not Detected
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	25	36	60
2-Propanol	6.1	Not Detected	15	Not Detected
Carbon Disulfide	6.1	Not Detected	19	Not Detected
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	Not Detected	53	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	Not Detected	5.3	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	1.5	12	6.0	48
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	14	7.4	68
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	Not Detected	7.1	Not Detected
Benzene	1.5	Not Detected	4.8	Not Detected
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	Not Detected	6.2	Not Detected
Trichloroethene	1.5	140	8.1	760
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.2	Not Detected
Toluene	1.5	5.7	5.7	21
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	32	10	220
2-Hexanone	6.1	Not Detected	25	Not Detected
Z-I ICADITUTIC	U. I	NOT DETECTED	20	NOT DETECTED

Client Sample ID: SVW 16 Lab ID#: 1311157A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112020 3.03	Date of Collection: 11/6/13 10:30:00 AM Date of Analysis: 11/21/13 05:04 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	Not Detected	7.0	Not Detected
Ethyl Benzene	1.5	Not Detected	6.6	Not Detected
m,p-Xylene	1.5	3.0	6.6	13
o-Xylene	1.5	Not Detected	6.6	Not Detected
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	Not Detected	7.4	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.4	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,4-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Naphthalene	6.1	Not Detected	32	Not Detected

Container Type: 1 Liter Summa Canister

:6		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: FB 01 Lab ID#: 1311157A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112107 2.88		of Collection: 11/2		
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)	
Freon 12	1.4	Not Detected	7.1	Not Detected	
Freon 114	1.4	Not Detected	10	Not Detected	
Chloromethane	14	Not Detected	30	Not Detected	
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected	
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected	
Bromomethane	14	Not Detected	56	Not Detected	
Chloroethane	5.8	Not Detected	15	Not Detected	
Freon 11	1.4	Not Detected	8.1	Not Detected	
Ethanol	5.8	Not Detected	11	Not Detected	
Freon 113	1.4	Not Detected	11	Not Detected	
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected	
Acetone	14	17	34	40	
2-Propanol	5.8	Not Detected	14	Not Detected	
Carbon Disulfide	5.8	Not Detected	18	Not Detected	
3-Chloropropene	5.8	Not Detected	18	Not Detecte	
Methylene Chloride	14	Not Detected	50	Not Detected	
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected	
rans-1.2-Dichloroethene	1.4	Not Detected	5.7	Not Detecte	
Hexane	1.4	Not Detected	5.1	Not Detecte	
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detecte	
2-Butanone (Methyl Ethyl Ketone)	5.8	Not Detected	17	Not Detecte	
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected	
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected	
Chloroform	1.4	Not Detected	7.0	Not Detected	
1,1,1-Trichloroethane	1.4	Not Detected	7.8	Not Detected	
Cyclohexane	1.4	Not Detected	5.0	Not Detected	
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected	
2,2,4-Trimethylpentane	1.4	Not Detected	6.7	Not Detected	
Benzene	1.4	Not Detected	4.6	Not Detected	
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected	
Heptane	1.4	Not Detected	5.9	Not Detected	
Trichloroethene	1.4	Not Detected	7.7	Not Detecte	
1,2-Dichloropropane	1.4	Not Detected	6.6	Not Detecte	
1,4-Dioxane	5.8	Not Detected	21	Not Detected	
Bromodichloromethane	1.4	Not Detected	9.6	Not Detected	
cis-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected	
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected	
Foluene	1.4	Not Detected	5.4	Not Detected	
rans-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected	
1,1,2-Trichloroethane	1.4	Not Detected	7.8	Not Detected	
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected	
2-Hexanone	5.8	Not Detected	9.6 24	Not Detected	

Client Sample ID: FB 01 Lab ID#: 1311157A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112107 2.88			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	.12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.6	Not Detected
Ethyl Benzene	1.4	Not Detected	6.2	Not Detected
m,p-Xylene	1.4	Not Detected	6.2	Not Detected
o-Xylene	1.4	Not Detected	6.2	Not Detected
Styrene	1.4	Not Detected	6.1	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected

1.4

1.4

1.4

5.8

5.8

5.8

Container Type: 1 Liter Summa Canister

1,4-Dichlorobenzene

alpha-Chlorotoluene

1,2-Dichlorobenzene

Naphthalene

1,2,4-Trichlorobenzene Hexachlorobutadiene

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	110	70-130

Not Detected

8.6

7.4

8.6

43

61

30

Client Sample ID: DUP 01 Lab ID#: 1311157A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	3112108 2.88			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	7.1	Not Detected
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.1	Not Detected
Ethanol	5.8	Not Detected	11	Not Detected
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	Not Detected	34	Not Detected
2-Propanol	5.8	Not Detected	14	Not Detected
Carbon Disulfide	5.8	Not Detected	18	Not Detected
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5.1	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	Not Detected	6.7	Not Detected
Benzene	1.4	Not Detected	4.6	Not Detected
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	55	7.7	300
1,2-Dichloropropane	1.4	Not Detected	6.6	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.6	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	3.7	5.4	14
trans-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Tetrachloroethene	1.4	350	9.8	2400
2-Hexanone	5.8	Not Detected	24	Not Detected
	-			

Client Sample ID: DUP 01 Lab ID#: 1311157A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112108 2.88		of Collection: 11/6 of Analysis: 11/21/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.6	Not Detected
Ethyl Benzene	1.4	Not Detected	6.2	Not Detected
m,p-Xylene	1.4	1.4	6.2	6.2
o-Xylene	1.4	Not Detected	6.2	Not Detected
Styrene	1.4	Not Detected	6.1	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.4	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	61	Not Detected
Naphthalene	5.8	Not Detected	30	Not Detected

Container Type: 1 Liter Summa Canister

Solitanio Typo T English		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: Lab Blank Lab ID#: 1311157A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112006 1.00		of Collection: NA of Analysis: 11/20	/13 09:13 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
B-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
rans-1.2-Dichloroethene	0.50	Not Detected	2.0	Not Detecte
Hexane	0.50	Not Detected	1.8	Not Detecte
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detecte
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
rans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1311157A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112006 1.00	Date of Collection: NA Date of Analysis: 11/20/13 09:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

: S		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: Lab Blank Lab ID#: 1311157A-05B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112106 1.00	Date of Collection: NA Date of Analysis: 11/21/13 08:29 F		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
· ·	0.50	Not Detected Not Detected	2.0	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected Not Detected	1.9	Not Detected
Toluene				
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1311157A-05B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3112106 1.00	Date of Collection: NA Date of Analysis: 11/21/13 08:29 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

: So pproduct		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: CCV Lab ID#: 1311157A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112002 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/20/13 05:55 PM

Compound	%Recovery
Freon 12	116
Freon 114	114
Chloromethane	102
Vinyl Chloride	112
1,3-Butadiene	100
Bromomethane	115
Chloroethane	110
Freon 11	113
Ethanol	86
Freon 113	113
1,1-Dichloroethene	106
Acetone	104
2-Propanol	84
Carbon Disulfide	109
3-Chloropropene	99
Methylene Chloride	98
Methyl tert-butyl ether	92
trans-1,2-Dichloroethene	105
Hexane	94
1,1-Dichloroethane	104
2-Butanone (Methyl Ethyl Ketone)	106
cis-1,2-Dichloroethene	104
Tetrahydrofuran	92
Chloroform	104
1,1,1-Trichloroethane	104
Cyclohexane	103
Carbon Tetrachloride	112
2,2,4-Trimethylpentane	100
Benzene	116
1,2-Dichloroethane	109
Heptane	112
Trichloroethene	109
1,2-Dichloropropane	113
1,4-Dioxane	109
Bromodichloromethane	109
cis-1,3-Dichloropropene	110
4-Methyl-2-pentanone	99
Toluene	109
trans-1,3-Dichloropropene	96
1,1,2-Trichloroethane	100
Tetrachloroethene	109
2-Hexanone	81

Client Sample ID: CCV Lab ID#: 1311157A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 3112002
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 11/20/13 05:55 PM

Compound	%Recovery
Dibromochloromethane	101
1,2-Dibromoethane (EDB)	102
Chlorobenzene	100
Ethyl Benzene	104
m,p-Xylene	102
o-Xylene	102
Styrene	102
Bromoform	112
Cumene	101
1,1,2,2-Tetrachloroethane	104
Propylbenzene	101
4-Ethyltoluene	108
1,3,5-Trimethylbenzene	108
1,2,4-Trimethylbenzene	109
1,3-Dichlorobenzene	110
1,4-Dichlorobenzene	109
alpha-Chlorotoluene	92
1,2-Dichlorobenzene	107
1,2,4-Trichlorobenzene	109
Hexachlorobutadiene	122
Naphthalene	99

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: CCV Lab ID#: 1311157A-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/21/13 05:59 PM

Compound	%Recovery
Freon 12	109
Freon 114	109
Chloromethane	94
Vinyl Chloride	107
1,3-Butadiene	94
Bromomethane	107
Chloroethane	106
Freon 11	105
Ethanol	78
Freon 113	106
1,1-Dichloroethene	100
Acetone	95
2-Propanol	79
Carbon Disulfide	104
3-Chloropropene	95
Methylene Chloride	93
Methyl tert-butyl ether	85
trans-1,2-Dichloroethene	101
Hexane	90
1,1-Dichloroethane	100
2-Butanone (Methyl Ethyl Ketone)	104
cis-1,2-Dichloroethene	98
Tetrahydrofuran	88
Chloroform	98
1,1,1-Trichloroethane	98
Cyclohexane	97
Carbon Tetrachloride	105
2,2,4-Trimethylpentane	94
Benzene	116
1,2-Dichloroethane	107
Heptane	109
Trichloroethene	108
1,2-Dichloropropane	111
1,4-Dioxane	111
Bromodichloromethane	108
cis-1,3-Dichloropropene	108
4-Methyl-2-pentanone	96
Toluene	109
trans-1,3-Dichloropropene	92
1,1,2-Trichloroethane	98
Tetrachloroethene	108
2-Hexanone	81

Client Sample ID: CCV Lab ID#: 1311157A-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/21/13 05:59 PM

Compound	%Recovery
Dibromochloromethane	98
1,2-Dibromoethane (EDB)	101
Chlorobenzene	99
Ethyl Benzene	103
m,p-Xylene	102
o-Xylene	100
Styrene	101
Bromoform	109
Cumene	100
1,1,2,2-Tetrachloroethane	104
Propylbenzene	100
4-Ethyltoluene	108
1,3,5-Trimethylbenzene	107
1,2,4-Trimethylbenzene	109
1,3-Dichlorobenzene	108
1,4-Dichlorobenzene	108
alpha-Chlorotoluene	91
1,2-Dichlorobenzene	107
1,2,4-Trichlorobenzene	108
Hexachlorobutadiene	122
Naphthalene	96

6		Method
Surrogates	%Recovery	Limits
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: LCS Lab ID#: 1311157A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112003 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/20/13 06:37 PM

DII. Factor.	1.00 Date of Analysis: 11/20/1	
Compound	%Recovery	Method Limits
Freon 12	118	70-130
Freon 114	118	70-130
Chloromethane	109	70-130
Vinyl Chloride	117	70-130
1,3-Butadiene	106	70-130
Bromomethane	120	70-130
Chloroethane	119	70-130
Freon 11	115	70-130
Ethanol	85	70-130
Freon 113	129	70-130
1,1-Dichloroethene	125	70-130
Acetone	102	70-130
2-Propanol	87	70-130
Carbon Disulfide	118	70-130
3-Chloropropene	110	70-130
Methylene Chloride	110	70-130
Methyl tert-butyl ether	95	70-130
trans-1,2-Dichloroethene	115	70-130
Hexane	101	70-130
1,1-Dichloroethane	111	70-130
2-Butanone (Methyl Ethyl Ketone)	114	70-130
cis-1,2-Dichloroethene	112	70-130
Tetrahydrofuran	95	70-130
Chloroform	107	70-130
1,1,1-Trichloroethane	106	70-130
Cyclohexane	109	70-130
Carbon Tetrachloride	113	70-130
2,2,4-Trimethylpentane	107	70-130
Benzene	122	70-130
1,2-Dichloroethane	111	70-130
Heptane	116	70-130
Trichloroethene	111	70-130
1,2-Dichloropropane	116	70-130
1,4-Dioxane	122	70-130
Bromodichloromethane	116	70-130
cis-1,3-Dichloropropene	111	70-130
4-Methyl-2-pentanone	104	70-130
Toluene	109	70-130
trans-1,3-Dichloropropene	93	70-130
1,1,2-Trichloroethane	101	70-130
Tetrachloroethene	110	70-130
2-Hexanone	89	70-130

Client Sample ID: LCS Lab ID#: 1311157A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112003 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/20/13 06:37 PM

	, 0	Method
Compound	%Recovery	Limits
Dibromochloromethane	105	70-130
1,2-Dibromoethane (EDB)	104	70-130
Chlorobenzene	99	70-130
Ethyl Benzene	104	70-130
m,p-Xylene	104	70-130
o-Xylene	101	70-130
Styrene	103	70-130
Bromoform	117	70-130
Cumene	103	70-130
1,1,2,2-Tetrachloroethane	104	70-130
Propylbenzene	103	70-130
4-Ethyltoluene	113	70-130
1,3,5-Trimethylbenzene	107	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3-Dichlorobenzene	109	70-130
1,4-Dichlorobenzene	106	70-130
alpha-Chlorotoluene	96	70-130
1,2-Dichlorobenzene	107	70-130
1,2,4-Trichlorobenzene	103	70-130
Hexachlorobutadiene	114	70-130
Naphthalene	59 Q	60-140

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: LCSD Lab ID#: 1311157A-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/20/13 06:55 PM

DII. Factor.	1.00 Date of Analysis	5: 11/20/13 06:55 PW
Compound	%Recovery	Method Limits
Freon 12	112	70-130
Freon 114	114	70-130
Chloromethane	102	70-130
Vinyl Chloride	113	70-130
1,3-Butadiene	100	70-130
Bromomethane	113	70-130
Chloroethane	110	70-130
Freon 11	108	70-130
Ethanol	82	70-130
Freon 113	123	70-130
1,1-Dichloroethene	118	70-130
Acetone	96	70-130
2-Propanol	84	70-130
Carbon Disulfide	114	70-130
3-Chloropropene	106	70-130
Methylene Chloride	105	70-130
Methyl tert-butyl ether	91	70-130
trans-1,2-Dichloroethene	109	70-130
Hexane	94	70-130
1,1-Dichloroethane	104	70-130
2-Butanone (Methyl Ethyl Ketone)	106	70-130
cis-1,2-Dichloroethene	105	70-130
Tetrahydrofuran	89	70-130
Chloroform	103	70-130
1,1,1-Trichloroethane	102	70-130
Cyclohexane	105	70-130
Carbon Tetrachloride	108	70-130
2,2,4-Trimethylpentane	104	70-130
Benzene	119	70-130
1,2-Dichloroethane	109	70-130
Heptane	114	70-130
Trichloroethene	111	70-130
1,2-Dichloropropane	112	70-130
1,4-Dioxane	115	70-130
Bromodichloromethane	113	70-130
cis-1,3-Dichloropropene	108	70-130
4-Methyl-2-pentanone	101	70-130
Toluene	109	70-130
trans-1,3-Dichloropropene	91	70-130
1,1,2-Trichloroethane	100	70-130
Tetrachloroethene	108	70-130
2-Hexanone	88	70-130

Client Sample ID: LCSD Lab ID#: 1311157A-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/20/13 06:55 PM

	, 0	Method
Compound	%Recovery	Limits
Dibromochloromethane	104	70-130
1,2-Dibromoethane (EDB)	103	70-130
Chlorobenzene	99	70-130
Ethyl Benzene	103	70-130
m,p-Xylene	104	70-130
o-Xylene	102	70-130
Styrene	102	70-130
Bromoform	114	70-130
Cumene	103	70-130
1,1,2,2-Tetrachloroethane	102	70-130
Propylbenzene	103	70-130
4-Ethyltoluene	114	70-130
1,3,5-Trimethylbenzene	107	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3-Dichlorobenzene	108	70-130
1,4-Dichlorobenzene	105	70-130
alpha-Chlorotoluene	96	70-130
1,2-Dichlorobenzene	105	70-130
1,2,4-Trichlorobenzene	106	70-130
Hexachlorobutadiene	117	70-130
Naphthalene	59 Q	60-140

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: LCS Lab ID#: 1311157A-07B

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 3112103
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 11/21/13 06:44 PM

DII. Factor.	1.00 Date of Analysis:	11/21/13 06:44 PW
Compound	%Recovery	Method Limits
Freon 12	112	70-130
Freon 114	115	70-130
Chloromethane	103	70-130
Vinyl Chloride	113	70-130
1,3-Butadiene	103	70-130
Bromomethane	110	70-130
Chloroethane	112	70-130
Freon 11	108	70-130
Ethanol	84	70-130
Freon 113	124	70-130
1,1-Dichloroethene	120	70-130
Acetone	96	70-130
2-Propanol	83	70-130
Carbon Disulfide	114	70-130
3-Chloropropene	104	70-130
Methylene Chloride	104	70-130
Methyl tert-butyl ether	91	70-130
trans-1,2-Dichloroethene	110	70-130
Hexane	95	70-130
1,1-Dichloroethane	105	70-130
2-Butanone (Methyl Ethyl Ketone)	104	70-130
cis-1,2-Dichloroethene	106	70-130
Tetrahydrofuran	91	70-130
Chloroform	102	70-130
1,1,1-Trichloroethane	100	70-130
Cyclohexane	107	70-130
Carbon Tetrachloride	107	70-130
2,2,4-Trimethylpentane	104	70-130
Benzene	118	70-130
1,2-Dichloroethane	107	70-130
Heptane	112	70-130
Trichloroethene	108	70-130
1,2-Dichloropropane	112	70-130
1,4-Dioxane	132 Q	70-130
Bromodichloromethane	112	70-130
cis-1,3-Dichloropropene	106	70-130
4-Methyl-2-pentanone	102	70-130
Toluene	107	70-130
trans-1,3-Dichloropropene	88	70-130
1,1,2-Trichloroethane	98	70-130
Tetrachloroethene	108	70-130
2-Hexanone	90	70-130

Client Sample ID: LCS Lab ID#: 1311157A-07B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/21/13 06:44 PM

	, O	Method
Compound	%Recovery	Limits
Dibromochloromethane	101	70-130
1,2-Dibromoethane (EDB	101	70-130
Chlorobenzene	97	70-130
Ethyl Benzene	102	70-130
m,p-Xylene	101	70-130
o-Xylene	100	70-130
Styrene	100	70-130
Bromoform	112	70-130
Cumene	100	70-130
1,1,2,2-Tetrachloroethane	100	70-130
Propylbenzene	101	70-130
4-Ethyltoluene	109	70-130
1,3,5-Trimethylbenzene	106	70-130
1,2,4-Trimethylbenzene	105	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	102	70-130
alpha-Chlorotoluene	93	70-130
1,2-Dichlorobenzene	102	70-130
1,2,4-Trichlorobenzene	102	70-130
Hexachlorobutadiene	110	70-130
Naphthalene	57 Q	60-140

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: LCSD Lab ID#: 1311157A-07BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/21/13 07:02 PM

DII. Factor.	Date of Analysis: 11/21/13 07:02 PM	
Compound	%Recovery	Method Limits
Freon 12	108	70-130
Freon 114	110	70-130
Chloromethane	102	70-130
Vinyl Chloride	111	70-130
1,3-Butadiene	101	70-130
Bromomethane	109	70-130
Chloroethane	110	70-130
Freon 11	105	70-130
Ethanol	85	70-130
Freon 113	121	70-130
1,1-Dichloroethene	115	70-130
Acetone	94	70-130
2-Propanol	82	70-130
Carbon Disulfide	× 111	70-130
3-Chloropropene	104	70-130
Methylene Chloride	100	70-130
Methyl tert-butyl ether	88	70-130
trans-1,2-Dichloroethene	106	70-130
Hexane	96	70-130
1,1-Dichloroethane	102	70-130
2-Butanone (Methyl Ethyl Ketone)	105	70-130
cis-1,2-Dichloroethene	106	70-130
Tetrahydrofuran	90	70-130
Chloroform	99	70-130
1,1,1-Trichloroethane	98	70-130
Cyclohexane	103	70-130
Carbon Tetrachloride	106	70-130
2,2,4-Trimethylpentane	103	70-130
Benzene	119	70-130
1,2-Dichloroethane	106	70-130
Heptane	114	70-130
Trichloroethene	110	70-130
1,2-Dichloropropane	113	70-130
1,4-Dioxane	116	70-130
Bromodichloromethane	112	70-130
cis-1,3-Dichloropropene	108	70-130
4-Methyl-2-pentanone	101	70-130
Toluene	109	70-130
trans-1,3-Dichloropropene	87	70-130
1,1,2-Trichloroethane	96	70-130
Tetrachloroethene	104	70-130
2-Hexanone	86	70-130

Client Sample ID: LCSD Lab ID#: 1311157A-07BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3112104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/21/13 07:02 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	100	70-130
1,2-Dibromoethane (EDB)	99	70-130
Chlorobenzene	95	70-130
Ethyl Benzene	100	70-130
m,p-Xylene	100	70-130
o-Xylene	99	70-130
Styrene	99	70-130
Bromoform	110	70-130
Cumene	99	70-130
1,1,2,2-Tetrachloroethane	99	70-130
Propylbenzene	100	70-130
4-Ethyltoluene	109	70-130
1,3,5-Trimethylbenzene	104	70-130
1,2,4-Trimethylbenzene	103	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	102	70-130
alpha-Chlorotoluene	91	70-130
1,2-Dichlorobenzene	102	70-130
1,2,4-Trichlorobenzene	104	70-130
Hexachlorobutadiene	112	70-130
Naphthalene	57 Q	60-140

Q = Exceeds Quality Control limits.

		Wethou	
Surrogates	%Recovery	Limits	
Toluene-d8	107	70-130	
1,2-Dichloroethane-d4	82	70-130	
4-Bromofluorobenzene	112	70-130	

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

ATTACHMENT J

Cairns Villa Caravan Park - Final Confirmation of Area Impacted by Chlorinated Solvents, Golder Associates Pty Ltd, Ref. No. 087673045-056-R-Rev1, dated 6 June 2014.

22-095 File B

Cairns Villa Caravan Park -**Final Confirmation of Area** Impacted by Chlorinated **Solvents**

Submitted to:

Resoluces Disc Mr sch4p4(6) Persona 32-36 Pease Street Manunda QLD 4883

Report Number. Distribution:

087673045-056-R-Rev1

1 Electronic Copy

Mr sch4p4(6) Person

1 Electronic Copy

Contaminated Land Auditor

Table of Contents

1.0	INTR	ODUCTION	1
2.0	BAC	GROUND	1
3.0	REME	EDIATION CRITERIA	3
4.0 PUMPING REGIME			3
	4.1	Pumping Locations	3
	4.2	Pumping Monitoring	
5.0	GRO	UNDWATER MONITORING	
	5.1	Scope	6
	5.2	Sampling Methodology	6
	5.3	Investigation Data QA/QC	6
	5.4	QA/QC Results	6
	5.5	Groundwater Well Results	7
	5.6	Discussion of Groundwater Results	g
6.0	SOIL	VAPOUR ASSESSMENT	9
	6.1	Scope	S
	6.2	Sampling Methodology	S
	6.3	Investigation Data QA/QC	10
	6.4	QA/QC Results	10
	6.5	Soil Vapour Well Results	10
	6.6	Discussion of Soil Vapour Results	11
7.0	REVI	EW OF ALL BOUNDARY RESULTS	11
8.0	CON	CLUSIONS AND RECOMMENDATIONS	12
9.0	LIMIT	ATIONS	12

FIGURES

Figure 1 – General Layout

Figure 2 - Investigation and Remedial Pumping Locations

Figure 3 – Originally Identified Area of Impact 2012

Figure 4 – Amended Area of Impact 2013

Figure 5 – Groundwater Levels December 2013

1.0 INTRODUCTION

Golder Associates Pty Ltd (Golder) was commissioned by Mr sch4p4(6) Personal to conduct monitoring and sampling at the Cairns Villa Caravan Park, Pease St, Manunda (Site). The aim of the monitoring and sampling works was to confirm the boundaries of the area of chlorinated solvent impact on the caravan park site. The overall objective of this report is to demonstrate that the clean area of the caravan park can be removed from the Environmental Management Register (EMR) once the contaminated area is subdivided from the clean areas into two new lot numbers.

This report describes the works conducted and the findings of the assessment.

2.0 BACKGROUND

A former dry cleaners site (Lot 1 on RP745758) owned by Mr sch4p4(6) F is situated adjacent to the Cairns Villa Caravan Park (Lot 1 on 742725), see Figure 1. The caravan park site has been the subject of a number of various investigations since the owners of the caravan park site identified the presence of chlorinated solvents in groundwater samples collected from their site in 2007.

The primary contaminants of concern (COCs) at the caravan park site are Tetrachloroethene (PCE) and its breakdown products – Trichloroethylene (TCE) and cis-1,2-dichloroethene (cis DCE). No free phase product has been observed in groundwater samples collected from the caravan park site during previous investigations or subsequent groundwater monitoring events.

Golder Report 087673045-007-Rev1 (July 2009) provides a summary of investigations prior to commencement of remedial works. Remedial works have been carried out on the caravan park site since late 2009.

The remediation works comprised groundwater extraction using bottom loading pumps in wells MW4KK (within the former dry cleaner site), MW11CP, MW12CP and MW5CP (see Figure 2). A product recovery trench was also installed in October 2010 along part of the eastern boundary of the former dry cleaner site (see Figure 2) to extract impacted groundwater and to mitigate movement of impacted groundwater between the sites. Extracted groundwater was disposed of to sewer under the dry cleaner site trade waste permit.

Golder prepared a Site Conceptual Model and Qualitative Risk Assessment report (0867673045-021-R-Rev0 in October 2011) aimed at identifying acceptable remediation criteria to allow removal of the caravan park site from the EMR. This report proposed the use of soil vapour concentrations as the basis of assessing suitability for future unrestricted site use. This assessment method and the agreed remediation criteria were accepted by the Third Party Reviewer (TPR) at that time.

The results of a Delineation Investigation undertaken by Golder are presented in report 087673045-033-R-Rev0 dated 20 August 2012. This Delineation Investigation comprised the utilisation of a Membrane Interface Probe (MIP) at 29 locations to provide real-time data to assist in the evaluation of the extent of chlorinated solvent impact. The MIP data was correlated against both groundwater sample concentrations and soil vapour concentrations from existing wells. The resulting interpreted extent of contamination of concern is marked on Figure 3. This interpreted area was "squared" and aligned against existing property boundaries, where possible, to simplify possible subdivision of this area from the remainder of the caravan park site.

The caravan park owner and Mrsch4p4(6) Psubsequently entered into an agreement to subdivide the caravan park property, with Mrsch4p4(6) Ppurchasing the impacted area and the balance of the caravan park to be removed from the Environmental Management Register (EMR).

Following review of the Delineation Investigation report, the TPR responded that the Department of Environment and Heritage Protection (EHP) had concerns with the previously agreed remediation criteria and that subsequently the TPR's risk assessment expert calculated lower criteria based on toxicity data published by the USEPA Integrated Risk Information System (IRIS). Golder subsequently reviewed the rationale and calculations utilised by the TPR's risk assessment expert and agreed with the resulting amended remediation criteria outlined below. These amended remediation criteria were considered suitable to allow the most sensitive land use (standard residential).

Parameter	Amended Remediation Criteria (μg/m³)
Trichloroethylene (TCE)	100
Tetrachloroethylene (PCE)	2,000

Further to the above, the TPR requested that confirmation soil gas wells be constructed on the proposed northern and southern boundaries of the subdivision to confirm that the amended remediation criteria was achieved prior to finalisation of these boundaries (the eastern boundary had been previously well defined by the results of investigations and monitoring). The results of subsequent investigations are described in Golder Report 087673045-040-Rev0 (10 April 2013) and resulted in an increase in the area of impact to the south. The defined area of impact, including additional buffers requested by the TPR are shown on Figure 4 and the resulting proposed subdivision is presented in Appendix A.

Progress on the proposed subdivision was halted in late April 2013, following the discovery of blocked and broken sewer pipes being used for the disposal of impacted groundwater. The sewer failure and potential impacts to groundwater were described in Golder Report 087673045-041-R-Rev0 (14 June 2013). It was concluded that the groundwater monitoring results collected since the commencement of groundwater extraction (and disposal via the sewer) were consistent with 'looping' of collected impacted groundwater discharging from sewer pipeline failures. Looping of collected impacted groundwater was also believed to explain the lack of progress by the extraction system to remove impacted groundwater on the caravan park site. Groundwater extraction and disposal to sewer was ceased whilst sewer repairs were conducted.

The proposed subdivision of the impacted portion of the caravan park site was recommenced in late August 2013. At this time, the TPR requested a status check of current groundwater conditions along the proposed boundaries prior to finalising submissions to EHP. The results of this groundwater sampling and analysis are presented in Golder letter 087673045-045-L-Rev0 (14 October 2013). Some increase in groundwater contaminant concentrations were noted at MW16CP and MW17CP. In order to address the uncertainty associated with these results and to confirm subdivision boundary locations that report recommended that:

- A bottom loading pump be installed at MW14CP to collect impacted water detected at this previously identified "hotspot" and intercept possible migration of impact groundwater.
- Soil gas sampling and analysis be conducted from SVW16 and SVW17 (located adjacent to MW16CP and MW17CP, respectively) to confirm that the concentrations of PCE and TCE at these locations.

Soil gas sampling was conducted on 6 November 2013 and the results are presented in Golder letter 087673045-048-L-Rev0 (25 November 2013). The results indicated soil gas concentrations exceeding the amended remediation criteria at both SVW16 and SVW17. These results suggested that the area of impact may have increased as a result of remedial pumping interruptions associated with sewer repairs and that the proposed subdivision boundary would need to be re-delineated and amended.

A meeting was held on 29 November 2013 between Golder, Mr s.73 Irreleva, the caravan park owner and the TPR to discuss the above results. As a result of the meeting, it was agreed that:

- Re-delineation of the subdivision boundary was not desirable.
- A plan was required to ensure that the area along the currently proposed subdivision boundary is clear of chlorinated solvent impact.
- The plan would comprise a revised and monitored pumping regime, monthly monitoring of groundwater quality for a period of time and a final soil vapour assessment of soil vapour wells on the proposed southern subdivision boundary (i.e. SVW16 and SVW17).

This report describes and documents the implementation and findings of the agreed works.

3.0 REMEDIATION CRITERIA

Since agreement on the amended remediation criteria for this site, the National Environment Protection (Assessment of Site Contamination) Measure 1999 was amended in May 2013 (NEPM). The amended NEPM contains interim soil vapour health investigation levels (HILs) for volatile organic chlorinated compounds (including the contaminants of concern) for various land settings.

The NEPM provided the following key guidance in relation to HILs:

- The interim HILs provide Tier 1 guidance for health risks from soil contamination sources and groundwater plumes associated with this group of compounds.
- HILs are intentionally conservative.
- HILs are not intended to be clean-up levels.
- HIL exceedences do not imply that a risk is necessarily present but that further assessment may be justified. HILs are not intended to indicate a clear demarcation between acceptable and unacceptable. Marginal exceedences may not require quantitative Tier 2 risk assessment to conclude that further assessment is not necessary.
- In cases of minor exceedence of investigation or screening levels, a qualitative risk assessment may be sufficient to evaluate the potential impact.

In consideration of the above, the results of the current soil vapour sampling have been compared against the NEPM interim HIL (listed below). However, the previously adopted amended remediation criteria were still considered to be the appropriate health-based criteria to be used for determining the suitability of proposed boundary of impacted land to be excised from the caravan park property.

Parameter	Amended Remediation Criteria (µg/m³)	NEPM Interim Health Investigation Level (μg/m³)
Trichloroethylene (TCE)	100	20
Tetrachloroethylene (PCE)	2,000	2000

4.0 PUMPING REGIME

4.1 Pumping Locations

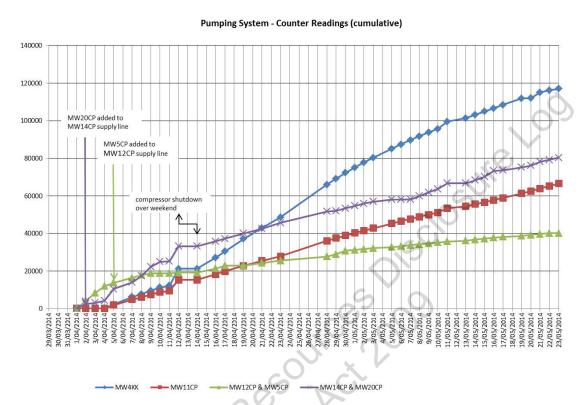
Figure 2 shows the location of monitoring well and sump pumping locations at both the caravan park and adjacent former dry cleaner site. A summary of the pumping locations is provided below:

- MW4KK A bottom loading air powered pump was installed in October 2009 and has remained in place.
- MW11CP A bottom loading air powered pump was installed in June 2010 and has remained in place.
- MW12CP A bottom loading air powered pump was installed in June 2010 and has remained in place.
- MW5CP A bottom loading air powered pump was installed in June 2010.
 - In October 2013 this pump was removed and installed into MW14CP.
 - In April 2014 a new pump was installed into MW5CP.
- MW14CP A bottom loading air powered pump was installed in October 2013.
- Product recovery trench An electric sump pump was installed in October 2010 and has remained in place.

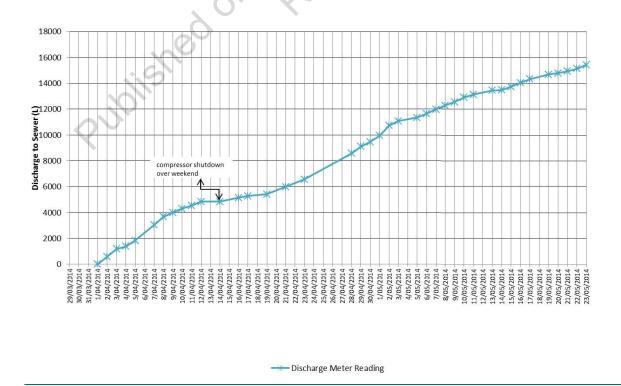
Groundwater levels were measured in December 2013 (see Figure 5) to evaluate the need for additional pumping locations. The groundwater levels were generally about 0.5m lower than previous measurements undertaken in April 2013 but provided very similar indications of a relatively flat hydraulic gradient with flow at the southern end of the site generally in a south to south easterly direction. Following review of this information and groundwater contaminant concentrations it was concluded that MW17CP should not be equipped with a pump (as this may change contaminant migration towards the nominated southern boundary) and that MC20CP should be equipped as an alternative.

MW20CP – A bottom loading air powered pump was purchased by Mr sch4p4(6) P and installed (by Golder) in early April 2014.

4.2 Pumping Monitoring


Pumps have been repaired and replaced at various locations since their original installation (apart from recently installed pumps at MW14CP and MW20CP). Mr sch4p4(6) Pretains responsibility for the maintenance and operation of the pumping system. Breakages, vandalism and equipment failure had previously prevented continuous and effective operation of the pumping system. To address this issue, it was agreed in late November 2013 that more regular and rigorous monitoring of the system would be conducted. The revised monitoring regime is summarised below:

- A complete check of the pumping system operation and equipment was conducted by Golder in December 2013. Repairs including replacement of tubing to MW12CP (line found to be perished and leaking air) were conducted at this time and the system was confirmed to be fully operational on 18 December 2013.
- During monthly groundwater sampling, Golder personnel conducted a check of the pumps to confirm that they were operating and conducted maintenance to remove silt and other obstructions, where required.
- From December 2013 to March 2014, daily checks of the compressor operation were conducted by Mr sch4p4(6) Per lessee at the former dry cleaner site (the records kept by the lessee were diary entries confirm the compressor was checked. Any issues, repairs or maintenance conducted by the lease were not recorded). When a new pump was installed by Golder at MW20CP in early April 2014, it was found that pumps in MW11CP and MW4KK were not pumping and that the air compressor appeared to be overloaded. Repairs were immediately conducted by Golder to recommence pumping again from these locations and Mr sch4p4(6) Per was informed of the air compressor issue. A new larger compressor was subsequently ordered and installed by Mr sch4p4(6) Per Before the new compressor could be installed the existing air compressor was overloaded and stopped on Saturday 12 April 2014 and could not be repaired until Monday 14 April 2014.
- As a result of the issues noted in early April, the routine of monitoring and checks was amended to comprise:
 - Recording pump counter and sewer discharge meter readings every day (former dry cleaning site leasee)
 - Recording that air compressor was operational and any issues or repairs (former dry cleaning site leasee).
 - Providing the above information to Golder on a daily basis to allow issues with specific pumps to be identified and dealt with (former dry cleaning site leasee).
 - Independent check of the system on a minimum weekly basis (Golder). The operation of each pump, air lines and delivery lines were checked and minor maintenance was conducted (as required) to ensure the pumping system remained effective.



A summary of the pump counter readings and sewer discharge meter readings from April 2014 are provided below. The monitoring conducted between December 2013 and May 2014 demonstrates that, apart from minor shutdowns for repairs, the system has remained operational and pumping has been consistent.

Pumping System - Flow Meter Discharge to Sewer (cumulative)

CA

CAIRNS VILLA CARAVAN PARK

5.0 GROUNDWATER MONITORING

5.1 Scope

A groundwater sampling and analysis event was carried out on 19 December 2013 at groundwater wells MW1CP, MW3CP, MW4CP, MW5CP, MW12CP, MW13CP, MW15CP, MW16CP, MW17CP, MW18CP, MW19CP and MW20CP. The aim of this initial event was to provide an indication of groundwater contaminant levels at this time across the caravan park site.

Monthly groundwater sampling and analysis events were then carried out on groundwater wells MW1CP, MW15CP, MW16CP and MW17CP. The aim of this monitoring was to provide an indication of improvement in groundwater quality and to guide the timing of soil vapour testing along the proposed southern boundary.

The results of monitoring events from December 2013 to April 2014 (including laboratory certificates) were reported in each month. Copies of the monthly summary reports are presented in Appendix B.

The laboratory certificates for the May 2014 sampling event are presented in Appendix C.

5.2 Sampling Methodology

Groundwater sampling was conducted by an experienced environmental scientist.

For each groundwater sampling event, monitoring wells were gauged and purged and allowed to stabilise before sampling was conducted on the following day.

The wells were sampled using bottom loading (Double Check Valve) disposable bailers. Each well was sampled using a new disposable bailer to ensure no cross contamination between sample locations. The samples were transferred into NATA accredited laboratory supplied sample containers and packed into an esky for transport to the laboratory (SGS).

5.3 Investigation Data QA/QC

In order to meet data quality assurance/quality control (QA/QC) Objectives, the groundwater sample events were carried out in general accordance with standard Golder technical procedures and comprised generally:

- Recording all field data directly onto relevant standard internal Golder forms;
- Use of clean and well maintained length and location measurement equipment;
- Documented calibration of all field parameter measurement equipment;
- Standard decontamination of all non-dedicated sampling equipment prior to and between sampling events (where relevant);
- Use of laboratory supplied and prepared sample containers appropriate for particular analytes;
- Immediate placement and storage of collected samples into ice/brick-cooled containers on-site prior to storage at the site-designated refrigerators or dispatch to the laboratory in accordance with the project programme

A laboratory duplicate sample was also carried out as part of this sampling exercise.

5.4 QA/QC Results

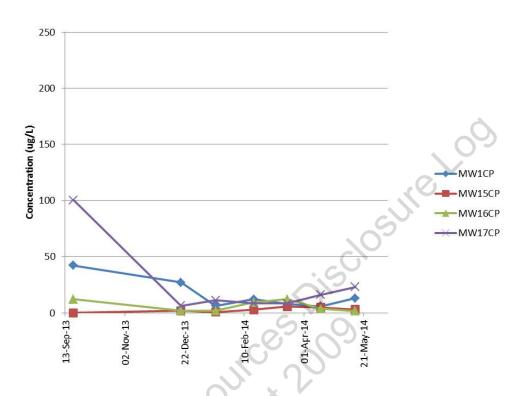
The QA/QC results for each groundwater monitoring event are presented in Appendix D.

These results confirm that the analytical data is of acceptable quality and suitable for use in this assessment.

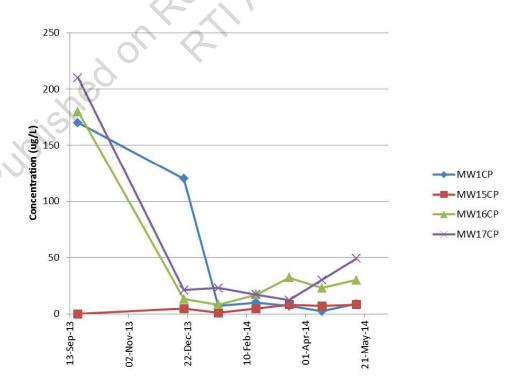
5.5 Groundwater Well Results

The results of the December groundwater monitoring round are presented along with a summary of all historical groundwater results in Appendix E.

A summary of the results for the parameters of concern at southern boundary locations from September 2013 to May 2014 are presented in Table 1.


Table 1: September 2013 – April 2014 Groundwater Monitoring Results at Proposed Southern Boundary locations

Monitoring Location	Date	TCE (µg/l)	PCE (μg/l)
	September 2013	170	42
	December 2013	120	27
	January 2014	7.2	6.3
MW1CP	February 2014	10	12
	March 2014	7.0	8.1
	April 2014	2.2	5.7
	May 2014	8.8	13
	September 2013	- 0	-
	December 2013	4.6	1.9
	January 2014	0.8	0.7
MW15CP	February 2014	4.6	2.8
	March 2014	8.1	5.5
	April 2014	6.9	4.7
	May 2014	8.1	2.9
	September 2013	180	12
99	December 2013	13	2
76	January 2014	8.1	1.7
MW16CP	February 2014	17	9.3
	March 2014	32	12
	April 2014	23	3.6
	May 2014	30	1.5
	September 2013	210	100
	December 2013	21	6.2
	January 2014	23	11
MW17CP	February 2014	17	8.4
	March 2014	12	8.3
	April 2014	30	16
	May 2014	49	23


PCE and TCE concentrations since September 2013 are also plotted in the graphs below.

PCE Concentrations in Groundwater

TCE Concentrations in Groundwater

5.6 Discussion of Groundwater Results

Contaminant concentrations in all wells sampled in December 2013 were well below the highest concentrations previously detected at these locations and did not indicate a significant deterioration in groundwater conditions.

The groundwater results and graphs along the proposed southern boundary show a significant and sustained reduction in PCE and TCE concentrations compared to September 2013 results.

A slight increase in TCE and PCE at MW17CP has occurred since the installation of the pumping well at MW20CP and is believed to indicate localised changes as a result of contaminant recovery pumping rather than a deterioration of groundwater conditions in this area. Soil vapour results (discussed in Section 6) also indicate that these groundwater concentrations are not of concern.

6.0 SOIL VAPOUR ASSESSMENT

6.1 Scope

The most recent soil vapour sampling was conducted at gas wells SVW16 and SVW17 located on the proposed southern boundary. The soil vapour monitoring wells were sampled by an experienced Environmental Scientist on 12 May 2014.

6.2 Sampling Methodology

The procedure for sampling VOCs using evacuated canisters, and for the subsequent analysis, is described in USEPA Method TO-15. The method involves the collection of whole air samples in passivated electropolished stainless steel canisters. The VOCs are subsequently separated by gas chromatography (GC), and measured by mass selective (MS) detector or multi-detector techniques.

SUMMA canister sampling was conducted in accordance with Golder Technical Procedure TP13 'Soil Gas Bore Sampling' as outlined below:

- The sampling train consisted of PTFE tubing, a glass impinger (moisture trap), flow controller and a 1 Litre SUMMA canister:
- The soil vapour bore and sampling train (PTFE tubing and glass moisture trap) were purged with a volume equal to three times the total bore and sampling train volume, immediately prior to sample collection;
- Samples were collected in low volume (1 litre) SUMMA canisters to reduce the possibility of atmospheric breakthrough and a false negative result;
- SUMMA canisters were equipped with a flow restricting orifice and a vacuum gauge to enable sampling over a nominal one hour period, again minimising the potential for atmospheric breakthrough; and
- A shroud and tracer gas was used during collection of all primary soil vapour samples.

SUMMA canister sampling was carried out in accordance with Golder Test Method No. C9 "Canister (Evacuated) Sampling for VOC and Reduced Sulphur Compounds: In Ambient Air and Source Emissions".

Sample analysis was conducted by Eurofins Air Toxics Ltd., in accordance with modified USEPA Method TO15. Eurofins Air Toxics Ltd is accredited by NELAP/Florida Department of Health for analyses of VOCs by the described method (Laboratory Accreditation No. E87680). Laboratory certificates of analysis are presented in Appendix F.

The following QA/QC measures were included in the sampling program:

- Above ground sampling tubing and in-line moisture traps (i.e. impingers) were replaced before sampling each well to prevent cross contamination.
- A field blanks was collected for the sampling event. The field blank was obtained as an ambient air sample recovered from the sampling train prior to soil vapour sample collection to determine possible ambient air and sample train contaminants.
- A replicates sample (at SVW17) was collected for the sampling event to check for repeatability. Replicates are normally collected concurrently with the primary sample using a "T" piece. For the sampling event in May 2014, equipment issues prevented use of the "T" piece and, therefore, the replicate sample was collected immediately following the collection of the primary sample.
- Initial leak tests were conducted on each SUMMA canister prior to collection of sample to ensure that the canisters had not lost vacuum in transit and that flow controllers would not leak during collection of sample.
- Tracer gas (ultra high purity helium) was monitored within a shroud during collection of all primary soil vapour samples to assess the potential for atmospheric breakthrough and a false negative result.
- Chain of custody documentation was completed for all samples collected.

6.4 QA/QC Results

As part of the QA/QC program a replicate sample and a field blank were collected. As part of the analytical run two laboratory blanks were also run.

No detections were found for the parameters analysed within the field blank or either of the laboratory blanks.

Helium testing indicated that the sampling was not compromised from the shroud gas, suggesting that the analytical run provided data which is of acceptable quality for the purposes of this investigation

A number of high RPDs were identified for compounds between the primary sample SVW17and the field duplicate. The field duplicate did not detect the contaminants of concern. As noted above, due to an equipment failure, the field duplicate could not be taken in conjunction with the primary sample and instead had to be taken after the primary had been collected. This method of sampling could have led to the differences observed for some analytes. This outcome was not considered to affect the overall results.

6.5 Soil Vapour Well Results

The results of the soil vapour samples collected from SVW16 and SVW17 are presented in Table 2 below.

Table 2: Results from Soil Vapour Sampling Round

Sampling Location	Trichloroethylene (TCE) μg/m³	Tetrachloroethylene (PCE) μg/m³
SVW16	Not Detected	Not Detected
SVW17	24	430
NEPM Interim HIL	20	2000
Amended Remediation Criteria	100	2000

A summary of all historical soil vapour results in presented in Appendix E

6.6 Discussion of Soil Vapour Results

The soil vapour results at SVW16 and SVW17 confirm PCE and TCE concentrations well below the amended remediation criteria.

We note that the TCE concentration at SVW17 was slightly above the NEPM interim HIL, however, as noted in Section 3, a marginal exceedence of this interim investigation levelis not considered to be an issue of concern that would warrant further consideration at this site.

7.0 REVIEW OF ALL BOUNDARY RESULTS

Northern Boundary

Soil vapour results well below the amended remediation criteria (and below the NEPM interim HILs) were confirmed at soil vapour wells (SVW8 and SVW9) on the proposed northern boundary in October 2012 (Golder Report 087673045-040-Rev0, 10 April 2013). Groundwater gauging in April 2013 and December 2013 did not indicate a northward groundwater gradient and therefore the potential for contaminant migration towards this boundary is considered to be negligible.

Sampling of groundwater wells MW3CP and MW4CP in December 2013, near the proposed northern boundary, revealed concentrations of PCE below laboratory detection levels and TCE at concentrations up to 2.9 ug/L.

Given the above results, the proposed northern boundary is considered to be suitable to define the northern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

Eastern Boundary

The eastern boundary was originally defined on the basis of the MIP delineation investigation, consideration of historical groundwater monitoring results and soil vapour results at SVW7 on the proposed eastern boundary (Golder Report 087673045-033-R-Rev0 dated 20 August 2012). The soil vapour results at SVW7 (TCE 12.5 ug/m3 and PCE 490 ug/m3) were well below the amended remediation criteria (and below the NEPM interim HILs) in July 2012. Groundwater gauging in April 2013 and December 2013 indicate some potential for groundwater movement to the south/south east and therefore the potential for contaminant migration towards this boundary is generally considered to be low with the highest risk at the south eastern end of the proposed subdivision area.

Sampling of groundwater wells MW18CP and MW19CP in December 2013, near the proposed eastern boundary at the southern end of the site, revealed concentrations of PCE below laboratory detection levels and TCE at concentrations up to 2.5 ug/L.

Given the above results and the implemented remedial pumping, the proposed eastern boundary is considered to be suitable to define the eastern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

Southern Boundary

The southern boundary was originally defined by the series on groundwater and soil gas investigations (Golder Report 087673045-040-R-Rev0 dated 10 April 2013). Remedial pumping interruptions associated with sewer repairs are believed to resulted in a deterioration of conditions in this area detected by groundwater and soil vapour results in October and November 2013, respectively (Golder Reports 087673045-045-L-Rev0, 14 October 2013 and 087673045-048-L-Rev0, 25 November 2013). Subsequent pumping and groundwater monitoring since December 2013 has indicated a significant and sustained improvement in groundwater conditions along the southern boundary. The soil vapour results at SVW16 and SVW17 on the proposed southern boundary were well below the amended remediation criteria (and below or close to the NEPM interim HILs) in May 2014.

Given the above results and the implemented remedial pumping, the proposed southern boundary is considered to be suitable to define the eastern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

CONCLUSIONS AND RECOMMENDATIONS 8.0

The studies completed and summarised in this assessment are considered suitable to define the area of chlorinated solvent impact on the existing caravan park property (Lot 1 on RP 742725). This area of impact is contained within the boundaries shown on Figure 4 (and the survey plan in Appendix A). The balance of the existing caravan park site, outside of the area of impact, is defined as proposed Lot 20 (as shown on the survey plan in Appendix A).

The caravan park site (Lot 1 on RP 742725) is understood to have been previously removed from the EMR in 2006 on the basis of site investigations and the removal and validation of an underground fuel tank. The property was again listed on the EMR following the discovery of chlorinated solvents in groundwater samples in 2007. No other notifiable activities have occurred at the property since its original removal in 2006. Therefore the balance of the existing caravan park site (proposed Lot 20) is considered to be suitable for unrestricted use and it is recommended that this allotment be removed from the EMR on its gazettal.

It is further recommended that a Site Management Plan be prepared for the former drycleaner site and the area excised from the caravan park to manage ongoing groundwater and contamination control measures within these sites.

9.0 **LIMITATIONS**

Your attention is drawn to the document "Limitations", which is included in Appendix G of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing. Resourch

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information sch4p4(6) Pe

Principal Environmental Engineer

PKS/JSB/ps

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

j:\env\2008\087673045 - kwikleen dry cleaners, pease st\correspondence out\087673045-56-r-rev1 final report.docx

MR sch4p4(6) Per

INVESTIGATION AND REMEDIAL PUMPING LOCATIONS

LEGEND

Soil Gas Wells

Extraction Sump Extraction Well

Monitoring Well

Туре

Extraction Trench

CaravanPark Kwikkleen

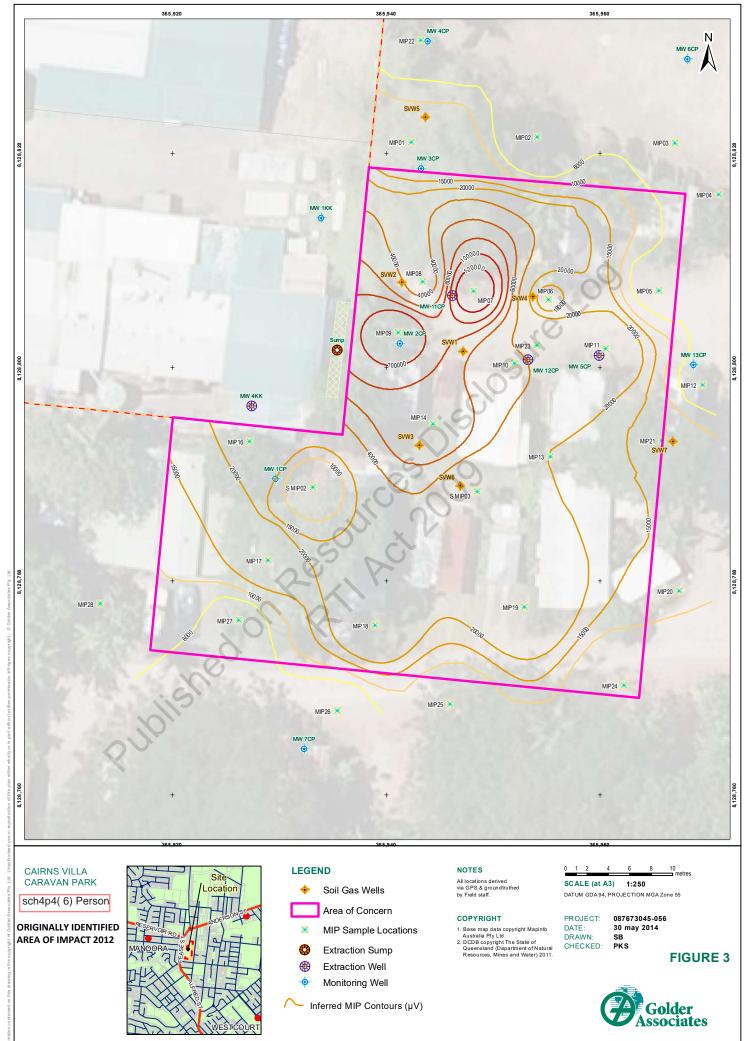
Cadastral Boundary

NOTES

All locations derived via GPS & groundtruthed by Field staff.

COPYRIGHT

Base map data copyright Mapinfo Australia Pty Ltd.
 DCDB copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2011.


SCALE (at A3) 1:600
DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: DATE: 087673045-056 30 MAY 2014 DRAWN: SB CHECKED: PKS

FIGURE 2

Page 262 of 406

22-095 File B Page 263 of 406

мк sch4p4(6) Ре

AMENDED AREA OF IMPACT 2013

COPYRIGHT

COPYRIGHT

1. Base map data copyright Mapinfo Australia Pty Ltd.

2. DCDB copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2011.

3. Aerial photography copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2006.

LEGEND

Soil Gas Well Locations

October Investigation

2012 December Investigation 2012

January Investigation 2013

Monitoring Wells

Extraction Sump

Extraction Well

Extraction Trench

SCALE (at A3) 1:500 DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: DATE: 087673045-056-R 30 MAY 2014 DRAWN: SB CHECKED: PKS

FIGURE 4

January Investigation 2013 NOTES

CAIRNS VILLA CARAVAN PARK sch4p4(6) Persor

GROUNDWATER LEVELS DECEMBER 2013

LEGEND

Monitoring Well (Groundwater level - metres AHD)

area to be exercised

CaravanPark Kwikkleen

Digital Cadastral Data

NOTES

COPYRIGHT

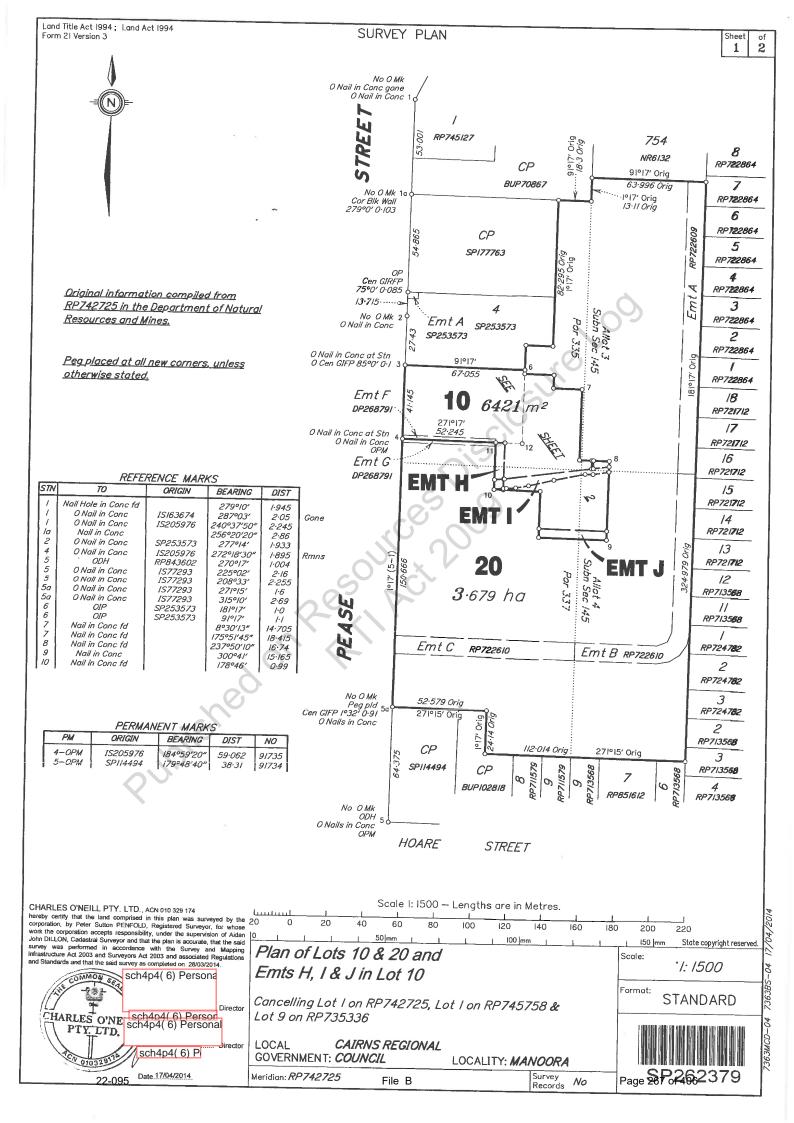
Base map data copyright Mapinfo Australia Pty Ltd.
 DCDB copyright The State of Queensland (Department of Natural Resources, Mines and Water) 2011.

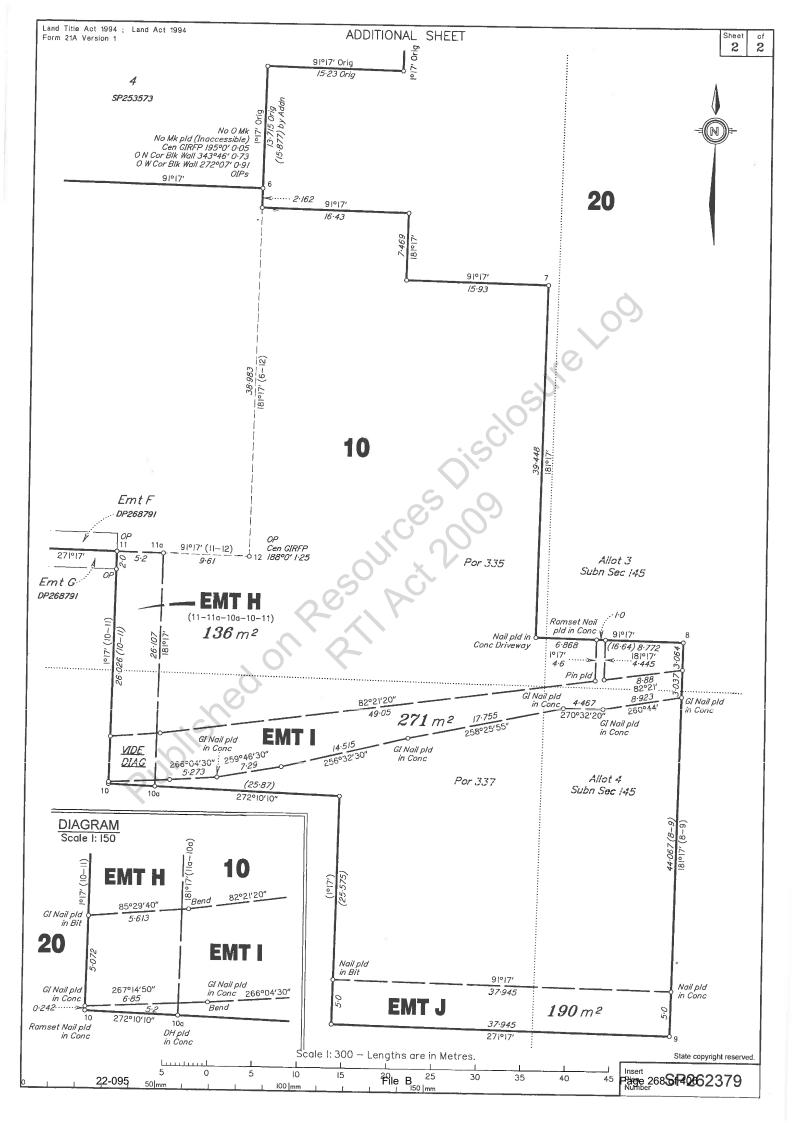
SCALE (at A3) 1:500

DATUM GDA 94, PROJECTION MGA Zone 55

PROJECT: DATE: 087673045-056 30 MAY 2014 DRAWN: SB CHECKED: PKS

FIGURE 5


Page 265 of 406



Published on Resources Disciosure Los **APPENDIX A**

Proposed Subdivision Plan

Information may not be placed in the outer margins. 5. Lodged by (Dealing No.) (Include address, phone number, reference, and Lodger Code) L Certificate of Registered Owners or Lessees. 6. Existing Created I/We NO VILLAS PTY LIMITED A.C.N. 131 660 805 Title Reference Description New Lots Secondary Interests TRUSTEE UNDER INSTRUMENT 711779135 21290225 Lot 1 on RP742725. 10 & 20 BUNGEE PTY LTD A.C.N. 121 865 763 EMTH, EMTI, EMT J 21366001 Lot I on RP745758 10 TRUSTEE UNDER INSTRUMENT 710387483 21275213 Lot 9 on RP735336 10 MORTGAGE ALLOCATIONS * as Registered Owners of this land agree to this plan and dedicate the Public Use Mortgage Lots Fully Encumbered Lots Partially Encumbered and as shown hereon in accordance with Section 50 of the Land Title Act 1994. 711779171 20 710387484 essees of this land agree to this plan. 10 ENCUMBRANCE EASEMENT ALLOCATIONS Signature of * Registered Owners * Lessees Easement Lots to be Encumbered 601349664 20 (Emt A on RP722609 and Emts B & C on RP722610) (A) I 3500 20 (Emt G on SP268791) TO I ISSUE 10 (Emt F on SP268791) BENEFIT EASEMENT ALLOCATIONS Easement Lots to be Benefited TO 1 2500 (Emt F on SP268791) TE CE DISUA 10 (Emt G on SP268791) * Rule out whichever is inapplicable Easements C & D on RP735336 (Nos. 601071238 & 601071239) are to be surrendered prior to registration of this plan 2. Planning Body Approval Lease 702492402 to be surrendered prior to registration of this plan hereby approves this plan in accordance with the: % Allot 4 Subn Sec 145 2. Building Format Plans only. Allot 3 Subn Sec 145 10 & 20 Por 337 I certify that: * As far as it is practical to determine, no part of the building shown on this plan encroaches Lots Orig onto adjoining lots or road; * Part of the building shown on this plan 7. Orig Grant Allocation : encroaches onto adjoining * lots and road 8. Map Reference: Dated this day of Cadastral Surveyor/Director * Date 8064-32121 lete words not required 9. Parish: 13. Lodgement Fees: **CAIRNS** Survey Deposit 10. County: Lodgement \$..... **NARES** New Titles \$____ * Insert the name of the Planning Body.

Insert designation of signatory or delegation % Insert applicable approving legislation Photocopy \$_____ II. Passed & Endorsed: Postage CHARLES O'NEILL PTY.LTD.AGN 010 329 174. 3. Plans with Community Management Statement: \$ 4. References: By: TOTAL \$_____ CMS Number: Dept File: Date: 17/04/14 sch4p4(6) Personal in Local Govt: |8/|3/|746 Name: Signed: 14. Insert Plan Number Page \$5262379 Surveyor: 7363MCD Resignation ... Çaqaşıral, Surveyor,

WARNING: Folded or Mutilated Plans will not be accepted.

Plans may be rolled.

APPENDIX B

Groundwater Monitoring Reports December 2013 to April 2014

3 February 2014

Project No. 087673045-052-L-Rev0

sch4p4(6) Personal i

Hospitality Services

~Transmission via email: sch@laundrygld.com.au~

AMENDED BOUNDARY GROUNDWATER MONITORING RESULTS DECEMBER-JANUARY 2014.

Following Golder Proposal No. 087673045-051-L-Rev0 issued on 11 December 2013, please find herewith the results and interpretation of the recent groundwater monitoring events at the site including along the proposed excised boundary groundwater wells.

This monitoring event follows on from the groundwater monitoring programme instigated on 19 December 2013 as part of a programme of works outlined in Golder Document 087673045-051-L-Rev0 which was issued on 11 December 2013, to chart the progress of the groundwater pumping regime in the context of remediating the groundwaters situated beneath the caravan park at Pease Street.

The following works were carried out:

- A groundwater pump was moved from MW5CP to MW14CP and commissioned with associated earthworks and amendments to onsite equipment at the end of October 2013.
- A system appraisal was carried out on 17-18 December 2013 which included opening and replacing any air/water lines where necessary and testing all of the pumps, air lines and compressors to ensure that the system was fully operating.
- A groundwater sampling and analysis event was carried out on groundwater wells MW1CP, MW3CP, MW4CP, MW5CP, MW12CP, MW13CP, MW15CP, MW16CP, MW17CP, MW18CP, MW19CP and MW20CP on 19 December 2013.
- A groundwater sampling and analysis event was carried out on groundwater wells MW1CP, MW15CP, MW16CP and MW17CP on 17 January 2014.
- Samples from all wells were analysed for volatile organic compounds.
- The December sampling round included a single QA/QC field sample. (as subsequent monitoring rounds are for information purposes only no QA/QC has been scheduled for the 2014 boundary locations monthly groundwater monitoring as a cost saving measure for the client).
- A short letter report (this document) was prepared to detail and discuss the findings of these monitoring rounds and compare any findings with the previous September groundwater monitoring round.

Field Work 17-19 December 2013

All wells at the site were gauged on 17 December with the exception of the following wells which were either pumping at the time or appear to have been decommissioned:

- MW4KK Pump
- MW8CP No longer present
- MW11CP Pump

22-095

- MW12CP Pump
- MW7CP No longer present
- MW14CP Pump

All other wells were purged and allowed to stabilise before sampling. The wells were then sampled by an experienced environmental scientist on 19 December using bottom loading (Double Check Valve) disposable bailers. Each well was sampled using a new disposable bailer to ensure no cross contamination between sample locations. The samples were transferred into NATA accredited laboratory supplied sample containers and packed into an esky for transport to the laboratory (SGS).

A duplicate sample was also taken at MWCP18 for QA/QC purposes. The water samples were sent for analyses of volatile organic compounds under chain of custody conditions.

Field Work 16-17 January 2014

Four wells along boundary locations (MW1CP, MW15CP, MW16CP and MW17CP) were gauged and purged on 16 January and allowed to stabilise before sampling. The wells were then sampled as per previous exercises on 17 January 2014.

Results

The complete Laboratory Certificate of Analyses for the December and January monitoring rounds are attached. For the purpose of this report the previously identified contaminants of concern Trichloroethylene (TCE), Perchloroethylene (PCE) and are the focus of the following sections. The results are summarised for boundary locations MW1CP, MW15CP, MW16CP and MW17CP below:

Table 1: September2013 – January 2014 Groundwater Monitoring Results at boundary locations

Monitoring Location	Date	TCE (µg/l)	PCE (μg/l)	cis-1,2- dichloroethene (μg/l)
MW1CP	September 2013	170	42	390
MW1CP	December 2013	120	27	130
MW1CP	January 2014	7.2	6.3	5.8
MW16CP	September 2013	180	12	320
MW16CP	December 2013	13	2	9.7
MW16CP	January 2014	8.1	1.7	5.4
MW17CP	September 2013	210	100	89
MW17CP	December 2013	21	6.2	9.7
MW17CP	January 2014	23	11	17

Discussion

Analytical results have revealed that groundwater concentrations of the contaminants of interest have largely decreased at all of the boundary locations of interest since the initial sampling round in September. This suggests that the current pumping regime has had a positive impact at the site.

Scheduling of Future Works

It is proposed to carry out boundary groundwater sampling for a minimum of 4 additional months after which soil gas monitoring shall be carried out.

Limitations

Your attention is drawn to the document "Limitations", which is attached to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather

22-095 File B2/3

to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Regards,

Golder Associates Pty Ltd sch4p4(6) Personal information

sch4p4(6) Personal i

Senior Environmental Engineer

CMC/PKS/hlb

sch4p4(6) Personal information

sch4p4(6) Perso

Principal Environmental Engineer

Attachments: Laboratory Certificate of Analysis

Limitations

Published on Refliket Politices Discharge Published on Refliket Politices Politices Discharge Politices Di \\cns1-s-file02\jobs\env\2008\087673045 - kwikleen dry cleaners, pease st\correspondence out\087673045-052-l-rev0 boundary gw sampling jan 2014.docx

File B3/3 22-095

Contact Sch4p4(6) Per LABORATORY DETAILS Sch4p4(6) Per Sch4p4(6) P

Client GOLDER ASSOCIATES PTY LTD Laboratory SGS Cairns Environmental
Address PO BOX 5823 Address Unit 2, 58 Comport St
216 Draper St Portsmith QLD 4870

216 Draper St CAIRNS QLD 4870

 Telephone
 07 4054 8200
 Telephone
 +61 07 4035 5111

 Facsimile
 07 4054 8201
 Facsimile
 +61 07 4035 5122

Email sch4p@golder.com Email AU.Environmental.Cairns@sgs.com

 Project
 087673045 Kwikleen
 SGS Reference
 CE107544 R0

 Order Number
 MQ8893
 Report Number
 0000013822

 Samples
 13
 Date Reported
 08 Jan 2014

 Date Received
 19 Dec 2013

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE123534. LOR for vinal chloride on sample 4 has been increased due to interferences from the sample matrix.

SIGNATORIES _

sch4p4(6) Personal information

sch4p4(6) Personal

Operations Manager

sch4p4(6) Personal information

sch4p4(6) Per

Manager Northern QLD

sch4p4(6) Personal information

sch4p4(6) Perso

Micro Supervisor / Quality Co-ordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

CE107544 R0

	S	nple Numbe ample Matri Sample Dat ample Nam	x Water te 19 Dec 2013	CE107544.002 Water 19 Dec 2013 MW4CP	CE107544.003 Water 19 Dec 2013 MW3CP	CE107544.004 Water 19 Dec 2013 MW5CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	<1.5↑
Bromomethane	µg/L	10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	µg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
lodomethane	µg/L	5	<5	<5	<5	<5
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5	<5
trans-1,2-dichloroethene	μg/L	0.5	1.4	<0.5	1.5	1.0
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	130	1.4	450	270
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	120	2.9	<0.5	110
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	27	<0.5	<0.5	38
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	115	125	109	118
d4-1,2-dichloroethane (Surrogate)	%	-	107	106	103	109
d8-toluene (Surrogate)	%	-	105	118	127	104
Bromofluorobenzene (Surrogate)	%	-	103	100	87	109
Other VOC Analytes in Water Method: AN433/AN434						
Pentachloroethane	μg/L	5	<5	< 5	<5	<5
Surrogates						
Dibromofluoromethane (Surrogate)	%	_	76	121	91	115
d4-1,2-dichloroethane (Surrogate)	%	-	100	105	112	114
d8-toluene (Surrogate)	%	-	101	95	116	98
(-3.10gato)	/0		.51			

83

73

Bromofluorobenzene (Surrogate)

74

80

CE107544 R0

		ample Numbe Sample Matri Sample Dat Sample Nam	x Water e 19 Dec 2013	CE107544.006 Water 19 Dec 2013 MW13CP	CE107544.007 Water 19 Dec 2013 MW15CP	CE107544.00 Water 19 Dec 2013 MW16CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Halogenated Aliphatics						
	/1	5	< 5	<5	<5	<5
Dichlorodifluoromethane (CFC-12)	μg/L			<5 <5		<5 <5
Chloromethane	µg/L	5	<5		<5	
Vinyl chloride (Chloroethene)	µg/L	0.3	3.8	2.5	1.6	0.8
Bromomethane	µg/L	10	<10	<10	<10	<10
Chloroethane	μg/L 	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	2.2	1.6	<0.5	<0.5
lodomethane	μg/L	5	<5	<5	<5	<5
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5	<5
trans-1,2-dichloroethene	μg/L	0.5	7.3	1.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	290	74	3.1	9.7
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	1600	190	4.6	13
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	800	100	1.9	2.0
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	125	120	123	113
d4-1,2-dichloroethane (Surrogate)	%	-	112	109	91	102
d8-toluene (Surrogate)	%	-	96	103	112	106
Bromofluorobenzene (Surrogate)	%	-	109	100	100	102
Other VOC Analytes in Water Method: AN433/AN434	-					
Pentachloroethane	μg/L	5	<5	<5	<5	<5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	106	121	101	110
d4-1,2-dichloroethane (Surrogate)	%	-	125	109	93	95
d8-toluene (Surrogate)	%	-	84	88	96	101
Bromofluorobenzene (Surrogate)	%	_	87	75	73	70

CE107544 R0

	\$	mple Numbe Sample Matri Sample Dat Sample Nam	ix Water te 19 Dec 2013	CE107544.010 Water 19 Dec 2013 MW18CP	CE107544.011 Water 19 Dec 2013 MW19CP	CE107544.012 Water 19 Dec 2013 MW20CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434						
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	1.0	0.9	<0.3	3.9
Bromomethane	µg/L	10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	µg/L	1	<1	<1	<1	<1
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	1.7
lodomethane	µg/L	5	<5	<5	<5	<5
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	<5
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	1.6
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	µg/L	0.5	9.7	7.7	<0.5	52
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	21	2.5	<0.5	100
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	6.2	<0.5	<0.5	34
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	<1
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	118	125	122	120
d4-1,2-dichloroethane (Surrogate)	%	-	105	109	111	110
d8-toluene (Surrogate)	%	-	119	102	101	101
Bromofluorobenzene (Surrogate)	%	-	103	113	105	106
Other VOC Analytes in Water Method: AN433/AN434						
Pentachloroethane	μg/L	5	<5	<5	<5	< 5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	105	106	98	128
d4-1,2-dichloroethane (Surrogate)	%	-	119	109	112	125
d8-toluene (Surrogate)	%	-	110	79	100	94

80

Bromofluorobenzene (Surrogate)

70

76

CE107544 R0

Sample Number Sample Matrix Sample Date Sample Name

Water 19 Dec 2013 MWX

Parameter Units LOI

VOCs in Water Method: AN433/AN434

Halogenated Aliphatics

Talogeriated Aliphatics			
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
Chloromethane	μg/L	5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	0.9
Bromomethane	μg/L	10	<10
Chloroethane	μg/L	5	<5
Trichlorofluoromethane	μg/L	1	<1
1,1-dichloroethene	μg/L	0.5	<0.5
lodomethane	μg/L	5	<5
Dichloromethane (Methylene chloride)	μg/L	5	<5
trans-1,2-dichloroethene	μg/L	0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<10 <5 <1 <0.5 <5 <5 <0.5 <0.5 <0.5 7.3
cis-1,2-dichloroethene	μg/L	0.5	7.3
1,1,1-trichloroethane	μg/L	0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	2.5
Dibromomethane	μg/L	0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
trans-1,4-dichloro-2-butene	µg/L	1	<1
cis-1,4-dichloro-2-butene	µg/L	1	<1
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5

Surrogates

Dibromofluoromethane (Surrogate)	%	-	120
d4-1,2-dichloroethane (Surrogate)	%	-	108
d8-toluene (Surrogate)	%	-	105
Bromofluorobenzene (Surrogate)	%	-	105

CE107544 R0

QC SUMMARY

CE107544 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loos

Published on Restlinct 2019

METHOD SUMMARY

CE107544 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009 QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

CLIENT DETAILS LABORATORY DETAILS sch4p4(6) Pers sch4p4(6) Contact Manager

GOLDER ASSOCIATES PTY LTD Client Laboratory SGS Cairns Environmental Address PO BOX 5823 Address Unit 2, 58 Comport St

216 Draper St **CAIRNS** QLD 4870

07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile

sch4p4 golder.com AU.Environmental.Cairns@sgs.com Email Email

Date Received

087673045 Kwikleen CE107801 R0 SGS Reference Project MQ8940 0000014283 Report Number Order Number 5 29 Jan 2014 Samples Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

ed on Pallice 1 VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE123980.

SIGNATORIES

sch4p4(6) Personal information sch4p4(6) Personal information

sch4p4(6) Personal sch4p4(6) Pe

Operations Manager Manager Northern QLD sch4p4(6) Persc

sch4p4(6) Personal information

Portsmith QLD 4870

17 Jan 2014

Micro Supervisor / Quality Co-ordinator

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

CE107801 R0

	Sa	iple Numbe imple Matri	x Water	CE107801.002 Water	CE107801.003 Water	CE107801.0 Water
		Sample Dat ample Nam		17 Jan 2014 MW15CP	17 Jan 2014 MW16CP	17 Jan 201 MW17CP
Parameter	Units	LOR				
/OCs in Water Method: AN433/AN434						
umigants						
,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
rans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
is-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
,	10				(0)	
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5
'inyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	<0.3
romomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
richlorofluoromethane	μg/L	1	<1	<1	<1	<1
,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
ans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
is-1,2-dichloroethene	μg/L	0.5	5.8	<0.5	5.4	17
romochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
richloroethene (Trichloroethylene,TCE)	µg/L	0.5	7.2	0.8	8.1	23
,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
etrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	6.3	0.7	1.7	11
,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
lexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics						
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
romobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
bibromofluoromethane (Surrogate)	%	-	120	110	109	109
4-1,2-dichloroethane (Surrogate)	%	-	119	117	114	111
8-toluene (Surrogate)	%	-	103	104	106	106
romofluorobenzene (Surrogate)	%	-	117	116	112	114
rihalomethanes				1.15	· ·-	
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
		0.5	<0.5	<0.5	<0.5	<0.5
romodichloromethane (THM)	μg/L	0.0				
romodichloromethane (THM)	µa/l	0.5	<0.5	<0.5	<0.5	
bibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5

CE107801 R0

			Sa :	nple Number ample Matrix Sample Date ample Name	CE107801.005 Water 17 Jan 2014 MWX
Parameter			Units	LOR	
VOCs in Water	Method: AN433/AN434				
Fumigants					
2,2-dichloropropane			μg/L	0.5	-
1,2-dichloropropane			μg/L	0.5	-

Halogenated Aliphatics

1,2-dichloropropane	μg/L	0.5	-	
trans-1,3-dichloropropene	μg/L	0.5	-	
cis-1,3-dichloropropene	μg/L	0.5	-	
1,2-dibromoethane (EDB)	μg/L	0.5	-	
Halogenated Aliphatics				osurelos
Dichlorodifluoromethane (CFC-12)	μg/L	5	-	(2)
Chloromethane	μg/L	5	-	
Vinyl chloride (Chloroethene)	μg/L	0.3	-	
Bromomethane	μg/L	10	-	
Chloroethane	μg/L	5	-	
Trichlorofluoromethane	μg/L	1	- (
1,1-dichloroethene	μg/L	0.5	÷ 63	
trans-1,2-dichloroethene	μg/L	0.5		
1,1-dichloroethane	μg/L	0.5	(-)	
cis-1,2-dichloroethene	μg/L	0.5	C Y	
Bromochloromethane	μg/L	0.5	50 - 70	
1,2-dichloroethane	μg/L	0.5) .(\=	
1,1,1-trichloroethane	μg/L	0.5	(-)	
1,1-dichloropropene	μg/L	0.5	02	
Carbon tetrachloride	μg/L	0.5	. /-	
Dibromomethane	µg/L	0.5	-	
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	-	
1,1,2-trichloroethane	µg/L	0.5	-	
1,3-dichloropropane	μg/L	0.5	-	
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	
1,1,1,2-tetrachloroethane	μg/L	0.5	-	
1,1,2,2-tetrachloroethane	µg/L	0.5	-	
1,2,3-trichloropropane	µg/L	0.5	-	
1,2-dibromo-3-chloropropane	μg/L	0.5	-	
Hexachlorobutadiene	μg/L	0.5	-	
Rublish				

CE107801 R0

		Sample Number Sample Matrix Sample Date Sample Name	CE107801.005 Water 17 Jan 2014 MWX
Parameter	Units	LOR	

VOCs in Water Method: AN433/AN434 (continued)

Halogenated Aromatics

Chlorobenzene	μg/L	0.5	-
Bromobenzene	μg/L	0.5	-
2-chlorotoluene	μg/L	0.5	-
4-chlorotoluene	μg/L	0.5	-
1,3-dichlorobenzene	μg/L	0.5	-
1,4-dichlorobenzene	μg/L	0.3	-
1,2-dichlorobenzene	μg/L	0.5	-
1,2,4-trichlorobenzene	μg/L	0.5	-
1,2,3-trichlorobenzene	μg/L	0.5	-

Surrogates

Dibromofluoromethane (Surrogate)	%	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	- (
d8-toluene (Surrogate)	%	-	: 6
Bromofluorobenzene (Surrogate)	%	-	

Trihalomethanes

Chloroform (THM)	μg/L	0.5	- (0)
Bromodichloromethane (THM)	μg/L	0.5	.()
Dibromochloromethane (THM)	μg/L	0.5	.//
Bromoform (THM)	μg/L	0.5	9

Sample on Hold Method:

Sample on Hold Method: Sample on Hold* No unit HOLD	Bromoionn (11111)		P9'-	0.0	
Sample on Hold* No unit HOLD	Sample on Hold	Method:	°O,	3,	
Rublished on Rall	Sample on Hold*		No unit		HOLD
	Cempre on Hold	PublishedonP	, so uni		NOED

QC SUMMARY

CE107801 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loos

Published on Restlinct 2019

METHOD SUMMARY

CE107801 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009

QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

27 February 2014

Document No. 087673045-053-L-Rev0

sch4p4(6) Personal i

Hospitality Services

~Transmission via email: sch@laundryqld.com.au~

AMENDED BOUNDARY GROUNDWATER MONITORING RESULTS FEBRUARY 2014.

Dear sch4p4

Following Golder Proposal No. 087673045-051-L-Rev0 issued on 11 December 2013, please find herewith the results and interpretation of the recent groundwater monitoring events at the site including along the proposed excised boundary groundwater wells.

This monitoring event follows on from the groundwater monitoring programme instigated on 19 December 2013 as part of a programme of works outlined in Golder Document 087673045-051-L-Rev0 which was issued on 11 December 2013, to chart the progress of the groundwater pumping regime in the context of remediating the groundwaters situated beneath the caravan park at Pease Street.

The following works were carried out:

- A groundwater sampling and analysis event was carried out on groundwater wells MW1CP, MW15CP, MW16CP and MW17CP on 18 February 2014.
- Samples from the above wells were analysed for volatile organic compounds.
- A short letter report (this document) was prepared to detail and discuss the findings of these monitoring rounds and compare any findings with the previous groundwater monitoring rounds dating back to September 2013.

Field Work 17-18 February 2014

Four wells along boundary locations (MW1CP, MW15CP, MW16CP and MW17CP) were gauged and purged on 17 February and allowed to stabilise before sampling. The wells were then sampled as per previous exercises on 18 February 2014.

Results

The complete Laboratory Certificate of Analyses for the February monitoring round is attached. For the purpose of this report the previously identified contaminants of concern Trichloroethylene (TCE), Perchloroethylene (PCE) and cis-1,2-dichloroethene are the focus of the following sections. Historical results are summarised for boundary locations MW1CP, MW15CP, MW16CP and MW17CP below:

Table 1: September2013 – February 2014 Groundwater Monitoring Results at boundary locations

Monitoring Location	Date	TCE (µg/l)	PCE (μg/l)	cis-1,2- dichloroethene (µg/l)
	September 2013	170	42	390
MW1CP	December 2013	120	27	130
IVIVV ICP	January 2014	7.2	6.3	5.8
	February 2014	10	12	9.7
	September 2013	-	-	-
MW15CP	December 2013	4.6	1.9	3.1
	January 2014	0.8	0.7	<0.5
	February 2014	4.6	2.8	2.6
	September 2013	180	12	320
MW16CP	December 2013	13	2	9.7
WWW TOCK	January 2014	8.1	1.7	5.4
	February 2014	17	9.3	23
	September 2013	210	100	89
MW17CP	December 2013	21	6.2	9.7
	January 2014	23	11	17
	February 2014	17	8.4	9.5

Discussion

The recent analytical results have revealed that groundwater concentrations of the contaminants of interest have remained well below the concentrations detected in September. Concentrations in February rebounded slightly from those recorded in January and are generally similar to those recorded in December. The exception to this trend was MW17CP were concentrations continued to decrease.

It was noted that all pumps were operational at the time when sampling was conducted.

Limitations

Your attention is drawn to the document "Limitations", which is attached to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

22-095 File **£**2/3

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information

sch4p4(6) Personal i

Senior Environmental Engineer

CC/PS/hlb

Published on Resources Dischosure Log Attachments: Laboratory Certificate of Analysis

sch4p4(6) Personal information

sch4p4(6) Pers

Principal Environmental Engineer

File B3/3 22-095

ANALYTICAL REPORT

CLIENT DETAILS -LABORATORY DETAILS sch4p4(6) F sch4p4(6) Pers Contact Manager

GOLDER ASSOCIATES PTY LTD Client Laboratory SGS Cairns Environmental Address PO BOX 5823 Address Unit 2, 58 Comport St

216 Draper St **CAIRNS** QLD 4870

07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile

sch4p4 golder.com AU.Environmental.Cairns@sgs.com Email Email

087673045 Kwikleen CE108420 R0 SGS Reference Project MQ8834 0000015144 Report Number Order Number 25 Feb 2014 Samples Date Reported 18 Feb 2014 Date Received

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

ed on Pall Act. VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE124987.

SIGNATORIES

sch4p4(6) Personal information

sch4p4(6) Persona

Operations Manager

sch4p4(6) Personal information

sch4p4(6) Pe

Manager Northern QLD

sch4p4(6) Personal information

sch4p4(6) Person

Portsmith QLD 4870

Micro Supervisor / Quality Co-ordinator

Page 1 of 4

ANALYTICAL REPORT

CE108420 R0

	Sa S	nple Numbe Imple Matri Sample Dat Imple Nam	x Water te 18 Feb 2014	CE108420.002 Water 18 Feb 2014 MW15CP	CE108420.003 Water 18 Feb 2014 MW16CP	CE108420.004 Water 18 Feb 2014 MW17CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434			_			
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	< 5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	9.7	2.6	23	9.5
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	10	4.6	17	17
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	12	2.8	9.3	8.4
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics					'	
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
	p9/L	0.0	-0.0	-0.0	10.5	10.0
Surrogates Dibromofluoromethane (Surrogate)	%	-	81	77	77	106
d4-1,2-dichloroethane (Surrogate)	%	-	119	117	113	99
d8-toluene (Surrogate)	%	-	94	101	99	102
- · · · · · · · · · · · · · · · · · · ·		-	92	98	99	99
Bromofluorobenzene (Surrogate)	%					
Bromofluorobenzene (Surrogate) Trihalomethanes	76					
Trihalomethanes		0.5	<0.5	<0.5	<0.5	<0.5
Trihalomethanes Chloroform (THM)	µg/L	0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
Trihalomethanes		0.5 0.5 0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5

QC SUMMARY

CE108420 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

METHOD SUMMARY

CE108420 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009 QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

26 March 2014

Document No. 087673045-054-L-Rev0

sch4p4(6) Personal i Hospitality Services

~Transmission via email: sch@laundryqld.com.au~

AMENDED BOUNDARY GROUNDWATER MONITORING RESULTS MARCH 2014.

Dear sch4p4

Following Golder Proposal No. 087673045-051-L-Rev0 issued on 11 December 2013, please find herewith the results and interpretation of the recent groundwater monitoring events at the site including along the proposed excised boundary groundwater wells.

This monitoring event follows on from the groundwater monitoring programme instigated on 19 December 2013 as part of a programme of works outlined in Golder Document 087673045-051-L-Rev0 which was issued on 11 December 2013, to chart the progress of the groundwater pumping regime in the context of remediating the groundwaters situated beneath the caravan park at Pease Street.

The following works were carried out:

- A groundwater sampling and analysis event was carried out on groundwater wells MW1CP, MW15CP, MW16CP and MW17CP on 18 March 2014.
- Samples from the above wells were analysed for volatile organic compounds.
- A short letter report (this document) was prepared to detail and discuss the findings of these monitoring rounds and compare any findings with the previous groundwater monitoring rounds dating back to September 2013.

Field Work 17-18 March 2014

Four wells along boundary locations (MW1CP, MW15CP, MW16CP and MW17CP) were gauged and purged on 17 March and allowed to stabilise before sampling. The wells were then sampled on 18 March 2014 as per previous monitoring events.

Results

The complete Laboratory Certificate of Analyses for the March monitoring round is attached. For the purpose of this report the previously identified contaminants of concern Trichloroethylene (TCE), Perchloroethylene (PCE) and cis-1,2-dichloroethene are the focus of the following sections. Historical results are summarised for boundary locations MW1CP, MW15CP, MW16CP and MW17CP below:

Table 1: September 2013 – March 2014 Groundwater Monitoring Results at boundary locations

Monitoring Location	Date	TCE (μg/l)	PCE (μg/l)	cis-1,2- dichloroethene (µg/l)
	September 2013	170	42	390
	December 2013	120	27	130
MW1CP	January 2014	7.2	6.3	5.8
	February 2014	10	12	9.7
	March 2014	7.0	8.1	5.1
	September 2013	-	-	<u>-</u>
	December 2013	4.6	1.9	3.1
MW15CP	January 2014	0.8	0.7	<0.5
	February 2014	4.6	2.8	2.6
	March 2014	8.1	5.5	7.3
	September 2013	180	12	320
	December 2013	13	2	9.7
MW16CP	January 2014	8.1	1.7	5.4
	February 2014	17	9.3	23
	March 2014	32	12	46
	September 2013	210	100	89
	December 2013	21	6.2	9.7
MW17CP	January 2014	23	11	17
	February 2014	17	8.4	9.5
	March 2014	12	8.3	35

Discussion

The recent analytical results have revealed that groundwater concentrations of the contaminants of interest have remained well below the concentrations detected in September. Concentrations at MW1CP have decreased slightly and are consistent with January 2014 levels. However, concentrations at MW15CP and MW16CP have increased with the largest increase observed for cis-1,2-dichloroethene at MW16CP. Concentrations of TCE and PCE decreased at MW17CP although there was an increase in cis-1,2-dichloroethene concentrations at this location. The marginal increases at MW15CP, MW16CP and MW17CP are considered to be the result of wet season conditions rather than a deterioration of pumping efficiency.

The current trends do not provide an indication that soil gas testing should be conducted before May 2014. Corresponding, the current trends do not indicate that pumping needs to be extended.

It was noted that all pumps were operational at the time when sampling was conducted.

Limitations

Your attention is drawn to the document "Limitations", which is attached to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

22-095 File **B**2/3

sch4p4(6) Personal information

Principal Environmental Engineer

sch4p4(6) Perso

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information sch4p4(6) Persona

Senior Environmental Engineer

CC/PS/hlb

Attachments: Laboratory Certificate of Analysis

Published on Resoluces Dischoslife Local Politished On Resolucion Dischoslife Cc: sch4p4(6) P- Contaminated Sites Auditor (sch4@jimsoltau.com~)

File B3/3 22-095

ANALYTCAL REPORT

CLIENT DETAILS LABORATORY DETAILS sch4p4(6) Per sch4p4(6) Contact Manager **GOLDER ASSOCIATES PTY LTD** Client Laboratory SGS Cairns Environmental Address PO BOX 5823 Address Unit 2, 58 Comport St 216 Draper St Portsmith QLD 4870 **CAIRNS** QLD 4870 07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsimile Facsimile sch4p@golder.com AU.Environmental.Cairns@sgs.com Email Email 087673045 Kwi kl een CE108914 R0 SGS Reference Project MQ8977 0000015947 Report Number Order Number 25 Mar 2014 Samples Date Reported

Date Received

18 Mar 2014

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE125927.

sch4p4(6) Personal information

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

ANALYTCAL REPORT

CE108914 R0

	S	ample Ma	Date 18 Mar 2014	CE108914.002 Water 18 Mar 2014 MW15CP	CE108914.003 Wa ter 18 Mar 2014 MW16CP	CE108914.00 ² Water 18 Mar 201 MW17CP
Pa ra metei	Uni ts	LOR				
VCCs in Water Method: AN433/AN434			_			
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
					()	
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	5.1	7.3	46	35
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride Dibromomethane	μg/L	0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	µg/L	0.5	7.0	8.1	32	12
Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	8.1	5.5	12	8.3
1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hex achlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics			1	1	'	
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	110	108	108	111
d4-1,2-dichloroethane (Surrogate)	%	-	111	109	110	112
d8-toluene (Surrogate)	%	-	95	96	98	96
Bromofluorobenzene (Surrogate)	%	-	95	94	94	89
Trihalomethanes						
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5

QC SUMMARY

CE108914 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

22-095 File B Page 302 of 406

METHOD SUMMARY

CE108914 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009 QC result is above the upper tolerance OFH QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

30 April 2014

Document No. 087673045-055-L-Rev0

sch4p4(6) Personal in Hospitality Services

~Transmission via email: sch@laundrygld.com.au~

AMENDED BOUNDARY GROUNDWATER MONITORING RESULTS APRIL 2014.

Dear sch4p4

Please find herewith the results and interpretation of the recent groundwater monitoring events at the site including along the proposed excised boundary groundwater wells.

This monitoring event follows on from the groundwater monitoring programme instigated on 19 December 2013 as part of a programme of works outlined in Golder Document 087673045-051-L-Rev0 (11 December 2013), to chart the progress of the groundwater pumping regime in the context of remediating the groundwaters situated beneath the caravan park at Pease Street.

The following works were carried out:

- A groundwater sampling and analysis event was carried out on groundwater wells MW1CP, MW15CP, MW16CP and MW17CP on 16 April 2014
- Samples from the above wells were analysed for volatile organic compounds
- A short letter report (this document) was prepared to detail and discuss the findings of these monitoring rounds and compare any findings with the previous groundwater monitoring rounds dating back to September 2013.

Field Work 15-16 April 2014

Four wells along boundary locations (MW1CP, MW15CP, MW16CP and MW17CP) were gauged and purged on 15 April and allowed to stabilise before sampling. The wells were then sampled on 16 April 2014 as per previous monitoring events.

It was noted that all pumps were operational at the time when sampling was conducted.

Results

The complete Laboratory Certificate of Analyses for the April monitoring round is attached. For the purpose of this report the previously identified contaminants of concern Trichloroethylene (TCE), Perchloroethylene (PCE) and cis-1,2-dichloroethene are the focus of the following sections. Historical results are summarised for boundary locations MW1CP, MW15CP, MW16CP and MW17CP below:

Table 1: September 2013 – April 2014 Groundwater Monitoring Results at boundary locations

Monitoring Location	Date	TCE (μg/l)	PCE (μg/l)	cis-1,2- dichloroethene (μg/l)
	September 2013	170	42	390
	December 2013	120	27	130
MW1CP	January 2014	7.2	6.3	5.8
IVIVV ICP	February 2014	10	12	9.7
	March 2014	7.0	8.1	5.1
	April 2014	2.2	5.7	0.5
	September 2013	-	-	-
	December 2013	4.6	1.9	3.1
MW15CP	January 2014	0.8	0.7	<0.5
IVIVV 15CP	February 2014	4.6 2.8		2.6
	March 2014	8.1 5.5		7.3
	April 2014	6.9	4.7	3.1
	September 2013	180	12	320
	December 2013	13	2	9.7
MW16CP	January 2014	8.1	1.7	5.4
IVIVV TOCP	February 2014	17	9.3	23
	March 2014	32	12	46
	April 2014	23	3.6	15
	September 2013	210	100	89
	December 2013	21	6.2	9.7
MM/470D	January 2014	23	11	17
MW17CP	February 2014	17	8.4	9.5
	March 2014	12	8.3	35
	April 2014	30	16	20

Discussion

The recent analytical results have revealed that groundwater concentrations of the contaminants of interest have remained well below the concentrations detected in September. Concentrations at MW1CP, MW15CP and MW16CP have all decreased slightly from the previous concentrations detected in March. Minor increases in TCE and PCE concentrations were detected at MW17CP with a decrease in Cis-1,2-dichloroethene concentration. The minor increases observed at MW17CP are considered to be the result of wet season conditions rather than a deterioration of pumping efficiency.

Given the requirements of the Deed of Settlement and the current trends, soil gas testing is recommended to be completed in early May 2014. We have programed to undertake soil gas tests at boundary wells SVW16 and SVW17 on the 7th/8th May 2014.

Limitations

Your attention is drawn to the document "Limitations", which is attached to this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

22-095 File **£**2/3

GOLDER ASSOCIATES PTY LTD

sch4p4(6) Personal information			
sch4p4(6) Personal info	•	sch4p4(6) Persona	
Environmental Scientist		Principal Environ	mental Enginee
OS/PS/cps/mb			
Attachments: Laboratory Certificate	of Analysis		.(0
Limitations	Of Allalysis		
			5
Cc: sch4p4(6) P - Contaminated Sites	Auditor	@jimsoltau.com~))
Tony Breuer - NQ Villas (~TBre	uer@gresha	am.com.au~)	
sch4p4(6) Persor – P&E Law (~ sch4	@paelaw.c	om~)	
		()	
		6	
		(6)	
		J (V	
	6		
	0,		
	とハ		
	0-		
20			
0			
20			
· Col			
10,			
▼			

sch4p4(6) Personal information

22-095 File **B**/3

COMMENTS

ANALYTICAL REPORT

Portsmith QLD 4870

16 Apr 2014

- CLIENT DETAILS ______ LABORATORY DETAILS

Contact sch4p4(6) Per Manager sch4p4(6) F

Client GOLDER ASSOCIATES PTY LTD Laboratory SGS Cairns Environmental Address PO BOX 5823 Address Unit 2, 58 Comport St

216 DRAPER ST QLD 4870

 Telephone
 07 4054 8200
 Telephone
 +61 07 4035 5111

 Facsimile
 07 4054 8201
 Facsimile
 +61 07 4035 5122

Email sch4p4@golder.com.au Email AU.Environmental.Cairns@sgs.com

Project087673045 KwikleenSGS ReferenceCE109447 R0Order NumberMQ8834Report Number0000016733Samples4Date Reported29 Apr 2014

Date Received

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

VOC's subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE126983.

sch4p4(6) Personal information

SGS Australia Pty Ltd ABN 44 000 964 278

Page 1 of 4

ANALYTICAL REPORT

CE109447 R0

	Sa S	nple Numbe Imple Matri Sample Dat Imple Nam	ix Water te 16 Apr 2014	CE109447.002 Water 16 Apr 2014 MW15CP	CE109447.003 Water 16 Apr 2014 MW16CP	CE109447.004 Water 16 Apr 2014 MW17CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434	Office	LOIK	_			
Fumigants						
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	0.5	3.1	15	20
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	2.2	6.9	23	30
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	5.7	4.7	3.6	16
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hex achlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Aromatics			'			
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates	pg-	0.0	0.0	.0.0	10.0	
₩		_	100	102	101	103
Dibromofluoromethane (Surrogate)	%					
Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	108	106	103	106
			108 93	106 97	103 99	106 93
d4-1,2-dichloroethane (Surrogate)	%	-				
d4-1,2-dichloroethane (Surrogate) d8 -toluene (Surrogate)	%	-	93	97	99	93
d4-1,2-dichloroethane (Surrogate) d8 -toluene (Surrogate) Bromofluorobenzene (Surrogate) Trihalomethanes	% % %	-	93 95	97 100	99	93 102
d4-1,2-dichloroethane (Surrogate) d8 -toluene (Surrogate) Bromofluorobenzene (Surrogate) Trihalomethanes Chloroform (THM)	% % %	-	93	97	99	93
d4-1,2-dichloroethane (Surrogate) d8 -toluene (Surrogate) Bromofluorobenzene (Surrogate) Trihalomethanes	% % %	0.5	93 95 <0.5	97 100 <0.5	99 104 <0.5	93 102 <0.5

QC SUMMARY

CE109447 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job. Published on Resources Dischosure Loo

22-095 File B Page 310 of 406

METHOD SUMMARY

CE109447 R0

METHOD -

METHODOLOGY SUMMARY

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

on Resolute 2009 QC result is above the upper tolerance OFH

QFL QC result is below the lower tolerance The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx . The Client's attention is liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

APPENDIX C

water Mo **Laboratory Certificates – Groundwater Monitoring May 2014**

CHAIN OF CUSTODY/ANALYSIS REQUEST

Phone: (07) 4727 1700

☐ Townsville Location

G	older sociates		25	McIlwraith S	treet, SOUTH	TOWNSVILL	E QLD 4810	Fax: (07)	4724 0511	
Ass	sociates			airns Locatio	eet, CAIRNS	QLD 4810			07) 4054 8200 4054 8201	Page _1_ of _1_
Project No.: Location:						1	100	100	1.6	TO BE COMPLETED BY LABORATORY
	No.: Q000434		-			11.1		144	VA	
HINGS BY LEAVE AND A STATE OF THE STATE OF T	iolder National I		es Agreement			V	IV			Samples Received In: (Please tick appropriate box)
1 - 3 - 7 - 1	ct: sch4p4(6) P		oo ngi coman			-				(Flease lick appropriate box)
Sample	Sample	No. of	Sample	HAC's				4	9"	
Location	No/Depth	Jars/Bags	Date	Ì				101		
MW1CP		2	14/05/14	Х				(0)		Appropriate Containers
MW15CP		2	14/05/14	X				5		
MW16CP		2	14/05/14	X						Pretreated Containers
MW17CP		2	14/05/14	Х			Co			
							0	(2)		Chilled State
	1									Other (Comment)
						20	X			
						3	O			PLEASE SEND RESULTS TO:
h					0	- X				Name sch4p4(6) Personal information
										Email:
						2				Name sch4p4(6) Personal information
					P					Email:
				70						
				70						PLEASE SEND INVOICE TO:
			. C							Name: NQO Accounts Dept.
										Email: nqoaccounts@golder.com.au
			10							
TEST REFER	ENCE NO.		00							
TURN AROUN	ND TIME									
Agreement.									ersonal inform rda	nce with National Master Services
Special Instruc	ctions: Please :	Supply in ES	SDAT Format							- n-e m
Relinquished:										Date: (4-)-14
Organisation: (Golder Associa	ites	Time: 0	9:00						Time: Disco 214 of 406
22-095						File	D			Page 314 of 406

ANALYTICAL REPORT

L ABORATORYDETAIL S

sch4p4(6) Pers sch4p4(6) [Contact Manager GOLDER ASSOCIATES PTY L TD SGS Cai rnsEnvi ronmental Cli ent Laboratory Address PO BOX 5823 Address Udi t 2, 58 Comport St Portsnith QLD 4870

216 DRAPER ST QLD 4870

07 4054 8200 Telephone +61 07 4035 5111 Telephone 07 4054 8201 +61 07 4035 5122 Facsi mil e Facsi mil e

ALEnvi ronmental. Cairns@sgs com sch4p4(6gol der. com. au Emai I Emai I

087673045 Kwikleen CE109936 R0 SGS Reference Proj ect MQ8834 0000017442 Report Nu mber Order Number 21 May 2014 Sampl es Date Reported Date Received 14 May 2014

COMMENTS

CLIENT DETAILS

Accredited for compli ance with ISO/ IEC 17025. NATA accredited laboratory 2562(3146)

ation Nu VDC' ssubcontracted to SGS Sy dney, Unit 16 33 MaddoxSt Alexandria NSW 2015, NATA Accredit tation Number: 2562, St te Number: 4354, SE127781.

SI GNATORIES

sch4p4(6) Personal information sch4p4(6) Personal information

sch4p4(6) Personal OperationsManag er

sch4p4(6) Pers

Manager Northern QLD

sch4p4(6) Personal information

sch4p4(6) Persona

M cro Supervisor / Qual i ty Co-ordinator

ANALYTICAL REPORT

CE109936 R0

	Si	nple Numbe ample Matri Sample Dat ample Nam	x Water e 14 May 2014	CE109936.002 Water 14 May 2014 MW15CP	CE109936.003 Water 14 May 2014 MW16CP	CE109936.004 Water 14 May 2014 MW17CP
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 Funig ants						
	1					
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halog enated Aliphatics						
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	<5
Chloromethane	μg/L	5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	μg/L	10	<10	<10	<10	<10
Chloroethane	μg/L	5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	μg/L	0.5	8.0	6.1	27	28
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	8.8	8.1	30	49
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	13	2.9	1.5	23
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Halog enated Aromatics						
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrog ates	10					
Dibromofluoromethane (Surrogate)	%	_	109	105	109	113
d4-1,2-dichloroethane (Surrogate)	%	_	114	109	115	116
d8-toluene (Surrogate)	%	-	97	103	105	96
Bromofluorobenzene (Surrogate)	%	-	93	105	101	97
Trihal omethan es			••	100		
Chloroform (THM)	ua/I	0.5	<0.5	<0.5	<0.5	<0 E
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Chloroform (THM) Bromodichloromethane (THM) Dibromochloromethane (THM)	μg/L μg/L μg/L	0.5 0.5 0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5

QC SUMMARY

CE109936 R0

MB b lank results are compared to the L imi t of Reporting

L CS and MS spike recoveries are measured as the percentage of analy te recovered from the sample compared the the amount of analy te spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formultae absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the result same less than the LOR and thus the RPD is not applicable.

No QC samples were reported f or thi sj ob. Published on Resources Dischosure Loo

METHOD SUMMARY

CE109936 R0

METHOD

METHODOLOGYSUMMARY

AN433/AN434

VDCsand C6-C9 Hy drocarbonsby GC-MSP&T: VDC sare v ol ati I e organic compounds The sample ispresented to a gaschromatograph via a purge and trap (P&T) concentrator and autosampl er and is detected with a Mass Spectrometer (MSD). Sol id samplesare i niti ally extracted with methanol whill stilliquid samplesare processed di rectly . Ref erences USEPA 5030B, 8020A, 8260.

FOOTNOTES

I S In sufficient sample for analysis

Sampl e li sted, but not received. LNR

Thisanaly sis isnot covered by the scope of accredi tation.

Indi cative data, theoreti cal holding time exceeded.

Performed by outs de l aboratory .

on Resolute 2009 OFH QC result i sabove the upper tol erance

QÆ QC result i sbel ow the lower tolerance

The sample wasnot analy sed for this analy te

NVL Not Val idated

Sampl esanaly sed asrecei ved.

Sol id samplesexpressed on a dry wei ght basis.

Some totalsmay not appear to add up because the total isrounded after adding up the raw values

The QC criteria are subject to internal review according to the SGSQAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.comau.pv.sgs/3/~/media/Local/Au.strali_a/Documents/ Technical %20Documents/ MP-AUENV-QU022%20QA%20QC%20Plan.pdf

This document is issued, on the Qi ent's behalf, by the Company under its General Condi ti ons of Service available on request and access ble http://www.sgs.com/en/Termsand-Condi ti ons/ General -Condi ti onsof -ServicesEng I ish.aspxThe Client's attention is drawn to the liability, i ndemification and jurisdiction i ssuesdefined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention of and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate | a transacti on fromexercis ng all their rights and obligationsunder the transaction documents

Thisreport must not be reproduced, except in full.

STATEMENT OF QA/QC **PERFORMANCE**

Manager

Address

Laboratory

Telephone

Facsimile

CLIENT DETAILS

LABORATORY DETAILS

sch4p4(6) Contact

Client SGS Environmental Cairns

Address 2/ 58 Comport Street

Port Smith

QLD 4870

07 4035 5111 Telephone 07 40355122 Facsimile

sch4p4(@sgs.com Email

CE109936 - 087673045 Kwikleen Project

CE109936 Order Number

Samples

sch4p4(6) Perso

SGS Alexandria Environmental

Unit 16. 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400

+61 2 8594 0499

au.environmental.sydney@sgs.com Fmail

SE127781 R0 SGS Reference 0000082759 Report Number

20 May 2014 Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. .a . rull. ⊆nvironmental lab The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

4 Waters 15/5/2014 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Number of eskies/boxes received

Yes 3.7°C Standard Yes Yes

COC

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St **Environmental Services** PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia

f+61 2 8594 0499

www.au.sgs.com

HOLDING TIME SUMMARY

SE127781 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOCs in Water

VOCS III VValoi							Mediod. ME-(AC)-[EIAA]MAHOOMAHOH
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
CE109936.001	SE127781.001	LB057485	14 May 2014	15 May 2014	21 May 2014	15 May 2014	24 Jun 2014	20 May 2014
CE109936.002	SE127781.002	LB057485	14 May 2014	15 May 2014	21 May 2014	15 May 2014	24 Jun 2014	20 May 2014
CE109936.003	SE127781.003	LB057485	14 May 2014	15 May 2014	21 May 2014	15 May 2014	24 Jun 2014	20 May 2014
CE109936.004	SE127781.004	LB057485	14 May 2014	15 May 2014	21 May 2014	15 May 2014	24 Jun 2014	20 May 2014
CE109936.004	SE127781.004	LB057485	14 May 2014	15 May 2014	21 May 2014	15 May 2014	24 Jun 2014	20 May 2014
						\		
					\sim			
					. ()-			
					1.60			
	Rublish							
				Ca				
				O '				
) <u>X</u> '				
			\cap					
				•				
	. (-)							
	<u> </u>							

SURROGATES

SE127781 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water

Parenter Sampolaton Sampolaton Singh Namor Units Oritoria Recovery Semunfluorobenseries (Surrogate) Ec169988.001 Sit 17791.002 % 40-139% 105	_					
CE109936.002 SE127781.002 % 40 - 130% 105			·			Recovery %
CE109936.003 SE127781.003 % 40 - 130% 101 CE109936.004 SE127781.004 % 40 - 130% 97 CE109936.001 SE127781.001 % 40 - 130% 114 CE109936.002 SE127781.002 % 40 - 130% 109 CE109936.003 SE127781.003 % 40 - 130% 115 CE109936.004 SE127781.004 % 40 - 130% 116 CE109936.004 SE127781.004 % 40 - 130% 116 CE109936.005 SE127781.005 % 40 - 130% 109 CE109936.006 SE127781.006 % 40 - 130% 109 CE109936.007 SE127781.007 % 40 - 130% 105 CE109936.008 SE127781.008 % 40 - 130% 105 CE109936.009 SE127781.000 % 40 - 130% 96 CE109936.000 SE127781.000 % 40 - 130% 96 CE109936.001 SE127781.001 % 40 - 130% 96 CE109936.002 SE127781.001 % 40 - 130% 96 CE109936.003 SE127	Bromofluorobenzene (Surrogate)					
CE109936.004 SE127781.004 % 40 - 130% 97						
d4-1,2-dichloroethane (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 114 CE109936.002 SE127781.002 % 40 - 130% 109 CE109936.003 SE127781.003 % 40 - 130% 115 CE109936.004 SE127781.004 % 40 - 130% 116 d8-foluene (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 97 CE109936.002 SE127781.002 % 40 - 130% 103 CE109936.003 SE127781.003 % 40 - 130% 96 Dibromofluoromethane (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 96			. 7			
CE109936.002 SE127781.002 % 40 - 130% 109 CE109936.003 SE127781.003 % 40 - 130% 115 CE109936.004 SE127781.004 % 40 - 130% 116 d8-toluene (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 97 CE109936.002 SE127781.002 % 40 - 130% 103 CE109936.003 SE127781.003 % 40 - 130% 105 CE109936.004 SE127781.004 % 40 - 130% 96 Dipromofluoromethane (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 109		CE109936.004	SE127781.004	%	40 - 130%	97
CE109936.003 SE127781.003 % 40 - 130% 115 CE109936.004 SE127781.004 % 40 - 130% 116 d8-toluene (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 97 CE109936.002 SE127781.002 % 40 - 130% 103 CE109936.003 SE127781.003 % 40 - 130% 105 CE109936.004 SE127781.004 % 40 - 130% 96 CE109936.004 SE127781.004 % 40 - 130% 96 CE109936.001 SE127781.001 % 40 - 130% 109	d4-1,2-dichloroethane (Surrogate)	CE109936.001	SE127781.001	%	40 - 130%	114
CE109936.004 SE127781.004 % 40 - 130% 116 d8-foluene (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 97 CE109936.002 SE127781.002 % 40 - 130% 103 CE109936.003 SE127781.003 % 40 - 130% 105 CE109936.004 SE127781.004 % 40 - 130% 96 Dibromofluoromethane (Surrogate) SE127781.001 % 40 - 130% 109		CE109936.002	SE127781.002	%	40 - 130%	109
d8-toluene (Surrogate)		CE109936.003		%	40 - 130%	115
CE109936.002 SE127781.002 % 40 - 130% 103 CE109936.003 SE127781.003 % 40 - 130% 105 CE109936.004 SE127781.004 % 40 - 130% 96 Dibromofluoromethane (Surrogate) CE109936.001 SE127781.001 % 40 - 130% 109		CE109936.004	SE127781.004	%	40 - 130%	116
CE109936.003 SE127781.003 % 40 - 130% 105 CE109936.004 SE127781.004 % 40 - 130% 96 Dibromofluoromethane (Surrogate) CF109936.001 SF127781.001 % 40 - 130% 109	d8-toluene (Surrogate)	CE109936.001	SE127781.001	%	40 - 130%	97
CE109936.004 SE127781.004 % 40 - 130% 96 Dibromofluoromethane (Surrogate) CF109936.001 SF127781.001 % 40 - 130% 109		CE109936.002	SE127781.002	%	40 - 130%	103
Dibromofluoromethane (Surrogate) CF109936 001 SF127781 001 % 40 - 130% 109		CE109936.003	SE127781.003	%	40 - 130%	105
Dibromofluoromethane (Surrogate) EE109938.001 SE127781.001 % 40-130% 109 EE109938.003 SE327781.003 % 40-130% 1019 EE109936.004 SE127781.004 % 40-130% 113		CE109936.004	SE127781.004	%	40 - 130%	96
DE109936.002 \$E127781.002 % 40 - 130% 105 CE109936.003 \$E127781.003 % 40 - 130% 113	Dibromofluoromethane (Surrogate)	CE109936.001	SE127781.001	%	40 - 130%	109
QE 109936,003 SÉ 127781.003 % 40 - 130% 109 CE 109936,004 SE 127781.004 % 40 - 130% 113		CE109936.002	SE127781.002	%	40 - 130%	105
CE109936.004 \$E127781.004 % 40 - 130% 113		CE109936.003	SE127781.003	%	40 - 130%	109
Published on Reful Rot 200		CE109936.004	SE127781.004	%	40 - 130%	113
	published	on Perlipo				
	Police					

METHOD BLANKS

SE127781 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water

					(to) [Eitty attion) t
ample Number		Parameter	Units	LOR	Result
3057485.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	µg/L	5	<5
		Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3
		Bromomethane	µg/L	10	<10
		Chloroethane	µg/L	5	<5
		Trichlorofluoromethane		1	<1
			µg/L	0.5	<0.5
		1,1-dichloroethene	μg/L		
		lodomethane	μg/L	5	<5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2.0
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5
		1,1,2-trichloroethane	µg/L	0.5	<0.5
		1,3-dichloropropane	µg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane		0.5	<0.5
			μg/L		
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
	67	trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)		-	100
	Juli Ogales				103
		d4-1,2-dichloroethane (Surrogate)			
		d8-toluene (Surrogate)	%	-	103
		Bromofluorobenzene (Surrogate)	%	-	90
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5

DUPLICATES

SE127781 R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

No duplicates were required for this job. RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

LABORATORY CONTROL SAMPLES

SE127781 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water

VOCS IN Water							ME-(AU)-[ENV]	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB057485.002	Halogenated	1,1-dichloroethene	μg/L	0.5	44	45.45	60 - 140	97
	Aliphatics	1,2-dichloroethane	μg/L	0.5	49	45.45	60 - 140	108
	·	Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	48	45.45	60 - 140	105
	Halogenated	Chlorobenzene	µg/L	0.5	45	45.45	60 - 140	99
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.9	5	60 - 140	98
	carrogatoc	d4-1,2-dichloroethane (Surrogate)	μg/L		4.8	5	60 - 140	96
		d8-toluene (Surrogate)	μg/L	5	4.5	5	60 - 140	90
		Bromofluorobenzene (Surrogate)	μg/L		4.9	5	60 - 140	98
	Trihalomethan	Chloroform (THM)	μg/L	0.5	39	45.45	60 - 140	86
	R	Chloroform (THM)						

MATRIX SPIKES

SE127781 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

MATRIX SPIKE DUPLICATES

SE127781 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean


The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis. LNR Sample listed, but not received.

Molished

- LOR Limit of reporting.
- QFH QC result is above the upper tolerance. QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- ⑥ LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- O LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

22-095 File B Page 327 of 406

20/5/2014 Page 9 of 9

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Telephone

Facsimile

LABORATORY DETAILS

sch4p4(6) Per Contact

GOLDER ASSOCIATES PTY LTD Client

PO BOX 5823 Address 216 DRAPER ST

QLD 4870

07 4054 8200 07 4054 8201

sch4p4(golder.com.au Email

087673045 Kwikleen Project

MQ8834 Order Number Samples 4

sch4p4(6) Manager

SGS Cairns Environmental Laboratory

Unit 2, 58 Comport St Address

Portsmith QLD 4870

+61 07 4035 5111 Telephone

+61 07 4035 5122 Facsimile

AU.Environmental.Cairns@sgs.com Email

Wed 14/5/2014 Samples Received Fri 23/5/2014 Report Due CE109936 SGS Reference

SUBMISSION DETAILS

This is to confirm that 4 samples were received on Wednesday 14/5/2014. Results are expected to be ready by Friday 23/5/2014. Please quote SGS reference CE109936 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 4 Waters Type of documentation received COC 14/5/2014 Date documentation received Samples received in good order Yes Sample temperature upon receipt Chilled Samples received without headspace Yes Sample container provider Turnaround time requested Standard SGS Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Samples clearly labelled Yes Number of eskies/boxes received Complete documentation received Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed. 7 John Red on Red

COMMENTS

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 22-095

Environmental Services

Unit 2 58 Comport St

Portsmith QLD 4870

File B

Australia

t +61 7 4035 5111

f+61 7 4035 5122

www.au.sgs.com

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _ Client GOLDER ASSOCIATES PTY LTD 087673045 Kwikleen Project SUMMARY OF ANALYSIS -Published on Resources Disclosure Los No. 001 002 003 004

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a prection.

APPENDIX D

Summary **Groundwater Monitoring QA/QC Summary Results**

		Kwikleen Dry C	leaners	Project Number:	087673045
Primary Laboratory:		SGS		Workorder Number:	CE107544
Secondary Laboratory:		NA		Workorder Number:	NA
Date Sampled:		19/12/201	13	Sample Medium:	Water
		:	Sample Information		
Number of Primary Samples:		4	Number of T	riplicate Samples:	-
Number of Duplicate Samples	:	1	Number of C	ther QAQC Samples:	-
		Documentation	and Sample Handling	Information	
			Y/N	Commer	nts
COC completed properly?			Υ	Signed by both field scientists and labs person	nel
All requested analysis completed			Υ		
Samples received intact and chil			Y		
Samples analysed within approp	iate holding times?		Υ		
Sample volumes sufficient for Q			Υ		
Are there non-NATA accredited			N		
Chromatograms supplied as app				NA	
aboratory reports signed by aut			Y		
	QAQC San	nple Information (Method Blank	k - MB, Rinsate Blank -	RB, Field Blank - FB, Trip Blank - TB)	
Туре	Si	ample ID		Comments	
Trip Blank		NA			
Method Blank		NA			
Rinsate		NA			
					, –
		T	rip Spike Information		
Analyte	Spike Concentrations	Recovery Concentration	on % Recovery	Commer	ıts
,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4/1	
				No trip spike was submitted	l as per QAQC plan.
		Laboratory	Control Spike (LCS) A		
Analyte G	roup			Comments	
		All LCS were within the laborato	ry control limit.		
		Matı	rix Spike (MS) Analyse		
Analyte G	roup			Comments	
		All MS results were within the la	boratory control limit.	<u> </u>	
			<u></u>		
			- 0		
	ı		ory Duplicates (LD) Ana		
Analyte Group	Analyte(s)	Sample ID	<i></i>	Comments	
			All results were within the	ne laboratory control limits.	
				A	
			Duplicates (FD) Analys		
Analyte Group	Primary ID	Duplicate ID		Comments	Do coloulated
Analyte Group	Primary ID MW18				Ds calculated.
Analyte Group		Duplicate ID		Comments	Ds calculated.
Analyte Group		MWX Duplicate ID	All results in primary an	Comments d duplicate anlysis below LOR, therefore no RP	Ds calculated.
	MW18	Duplicate ID MWX Field		Comments d duplicate anlysis below LOR, therefore no RP	Ds calculated.
Analyte Group Analyte Group		MWX Duplicate ID	All results in primary an	Comments d duplicate anlysis below LOR, therefore no RP	Ds calculated.
	MW18	Duplicate ID MWX Field	All results in primary an	Comments d duplicate anlysis below LOR, therefore no RP	Ds calculated.
	MW18	Duplicate ID MWX Field	All results in primary an	Comments d duplicate anlysis below LOR, therefore no RP	Ds calculated.
	MW18	Duplicate ID MWX Field Triplicate ID	All results in primary an Triplicates (FT) Analys	Comments d duplicate anlysis below LOR, therefore no RP ses Comments	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID	All results in primary an	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
	MW18	Duplicate ID MWX Field Triplicate ID Surrogate C	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.
Analyte Group	Primary ID	Duplicate ID MWX Field Triplicate ID Surrogate C All surrogate recoveries within a	All results in primary an Triplicates (FT) Analys compound Monitoring acceptable control limits.	Comments d duplicate anlysis below LOR, therefore no RP ses Comments Analyses	Ds calculated.

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 $\hbox{*When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated}$

Performed By: <u>sch4p4(6) Pers</u>
Date: <u>29/05/2014</u>

sch4p4(6) Personal Date: 29/05/2014

File B J:\Env\2008\087673045 - Kwikleen Dry Cleaners, Pease St\Correspondence Out\056 Attachments\Appendix D\1.087473045-056-Dec GME Data Validation.xlsx

Primary Laboratory: Secondary Laboratory: Date Sampled: Sumber of Primary Samples: Sumber of Duplicate Samples: COC completed properly? All requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC Are there non-NATA accredited m Chromatograms supplied as appro-		SGS NA 17/01/201	4 Sample Information	Workorder Number: Workorder Number: Sample Medium:	CE107801 NA Water	
Date Sampled: Jumber of Primary Samples: Jumber of Duplicate Samples: COC completed properly? All requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC Are there non-NATA accredited m Chromatograms supplied as appro		17/01/201				
Number of Primary Samples: Number of Duplicate Samples: COC completed properly? Ill requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC Are there non-NATA accredited m Chromatograms supplied as appro				Sample Medium:	Water	
COC completed properly? All requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC are there non-NATA accredited monomatograms supplied as appro			Sample Information			
COC completed properly? All requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC are there non-NATA accredited monomatograms supplied as appro		4				
COC completed properly? All requested analysis completed? Samples received intact and chille Samples analysed within appropia Sample volumes sufficient for QC Are there non-NATA accredited m Chromatograms supplied as appro				riplicate Samples:	-	
all requested analysis completed? camples received intact and chille camples analysed within appropia cample volumes sufficient for QC are there non-NATA accredited m chromatograms supplied as appro		-		ther QAQC Samples:	-	
Il requested analysis completed? amples received intact and chille amples analysed within appropia ample volumes sufficient for QC are there non-NATA accredited mathematograms supplied as appro-		Documentation	and Sample Handling			
all requested analysis completed? camples received intact and chille camples analysed within appropia cample volumes sufficient for QC are there non-NATA accredited m chromatograms supplied as appro			Y/N		ments	
amples received intact and chille amples analysed within appropia ample volumes sufficient for QC are there non-NATA accredited mathematograms supplied as appro-	`		Y	Signed by both field scientists and labs per	rsonnei	
Samples analysed within appropia Sample volumes sufficient for QC are there non-NATA accredited m Chromatograms supplied as appro			Y			
Sample volumes sufficient for QC Are there non-NATA accredited m Chromatograms supplied as appro			Y			
are there non-NATA accredited m Chromatograms supplied as appro			Y			
Chromatograms supplied as appro						
			N	NA		
aboratory reports signed by auth	•		Y	NA		
, ,		ula lafa una di au (Madh a d Diau)		DD Field Blook - FD Tale Blook - TD)		
			c - MB, Rinsate Blank -	RB, Field Blank - FB, Trip Blank - TB)		
Туре	Sa	mple ID		Comments		
Trip Blank		NA				
Method Blank		NA			-()	
Rinsate		NA			6 7	
	,	Ti	rip Spike Information			
Analyte	Spike Concentrations	Recovery Concentration	n % Recovery	Com	ments	
		• • • • • • • • • • • • • • • • • • • •		. (/)		
				No trip spike was subn	nitted as per QAQC plan.	
		Laboratory	Control Spike (LCS) A			
Analyte Gro				Comments		
		All LCS were within the laborato	ry control limit.			
				., 65		
		Mati	rix Spike (MS) Analyse			
Analyte Gro		All MS results were within the laboratory control limit.				
		All MS results were within the la	boratory control limit.	Y		
			0			
			ry Duplicates (LD) Ana			
Analyte Group	Analyte(s)	Sample ID	()	Comments		
			All results were within th	ne laboratory control limits.		
		Field	Dunlington (FD) Analys			
Associate Oscassos	Deles en ID		Duplicates (FD) Analys			
Analyte Group	Primary ID	Duplicate ID		Comments		
			-V			
		- (A- 1)				
		4	Triplicates (ET) A			
Ameliate 2	Bulan in I		Triplicates (FT) Analys			
Analyte Group	Primary ID	Triplicate ID	¥	Comments		
		() X				
		~ `				
		0	annum arrow of \$5 (6)	Analyses		
Ameliate 2	Aughe 40	Surrogate C	ompound Monitoring			
Analyte Group	Analyte(s)			Comments		
		All surrogate recoveries within a	cceptable control limits.			
	.:.63					
	*		Overell Comments			
			Overall Comments			
X X						
•						
		r environmnetal interpretive use.				

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 * When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

 Performed By:
 Sch4p4(6) Per
 Checked By Sch4p4(6)

 Date:
 29/05/2014
 Date: 29/05/2014

22-095
Golder Associates Pty Ltd:

Page 332 of 406
J:\Env\2008\087673045 - Kwikleen Dry Cleaners, Pease St\Correspondence Out\056 Attachments\Appendix D\Z. 088/3045-056-Jan GME Data Validation.xlsx

rimary Laboratory: econdary Laboratory:		Kwikleen Dry C	ICAIICIS	Project Number:	087673045 CE108420
		SGS NA		Workorder Number: Workorder Number:	CE108420
ate Sampled:		18/02/201	4	Sample Medium:	NA Water
ate Campieu.			Sample Information	овтри местат.	••atei
umber of Primary Samples:		4		riplicate Samples:	-
umber of Duplicate Samples	s:	-		Other QAQC Samples:	-
		Documentation	and Sample Handling	Information	
			Y/N		Comments
OC completed properly?			Y	Signed by both field scientists and labs	personnel
Il requested analysis complete amples received intact and ch			Y Y		
amples analysed within approp			Y		
ample volumes sufficient for Q			Y		
re there non-NATA accredited			N N		
hromatograms supplied as ap				NA	
aboratory reports signed by au	thorised personnel?		Y		
			c - MB, Rinsate Blank -	RB, Field Blank - FB, Trip Blank - TB	5)
Type	Sa	ample ID		Comments	
Trip Blank		NA			
Method Blank	<u> </u>	NA NA			
Rinsate		NA			
	<u>I</u>	т.	rip Spike Information		
					V .
Analyte	Spike Concentrations	Recovery Concentration	n % Recovery		comments
				No trip spike was s	ubmitted as per QAQC plan.
					-
		Laboratory	Control Spike (LCS) A		
Analyte G	iroup			Comments	
		All LCS were within the laborato	ry control limit.		
				÷ 6	
		Matr	rix Spike (MS) Analyse	15	
Analyte G	Froup		in opino (mo) raianjo	Comments	
		All MS results were within the lai	boratory control limit.		
			Ca		
			0,3		
			ry Duplicates (LD) An		
Analyte Group	Analyte(s)	Sample ID	()(Comments	
			All results were within t	the laboratory control limits.	
		Field	Duplicates (FD) Analys	ses	
Analyte Group	Primary ID	Duplicate ID	. ()	Comments	
		- (7)			
			-		
			Triplicates (FT) Analys		
Analyte Group	Primary ID	Triplicate ID	•	Comments	
		(), X			
	1				
		Surrogate C	ompound Monitoring	Analyses	
Analyte Group	Analyte(s)	- Guirogale C	pound monitoring	Comments	
у.с с. оир		All surrogate recoveries within a	ccentable control limits		
		sarrogato recoveries within a	cooptable control milits.		
	113				
•					
	1		Overell Orient		
			Overall Comments		
\longrightarrow					
*					
*					

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 * When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

 Performed By:
 Sch4p4(6) Pe
 Checked By Sch4p4(

 Date:
 29/05/2014
 Date: 29/05/2014

22-095
Golder Associates Pty Ltd:

Page 333 of 406
J:\Env\2008\087673045 - Kwikleen Dry Cleaners, Pease St\Correspondence Out\056 Attachments\Appendix D\3: 08/973045-056-Feb GME Data Validation.xlsx

Project Name:		Kwikleen Dry C	leaners	Project Number:	087673045
Primary Laboratory:		SGS		Workorder Number:	CE108914
Secondary Laboratory:		NA		Workorder Number:	NA
Date Sampled:		18/03/201	4	Sample Medium:	Water
			Sample Information		
Number of Primary Samples:		4	Number of T	riplicate Samples:	-
Number of Duplicate Samples:		-		ther QAQC Samples:	-
		Documentation	and Sample Handling	Information	
			Y/N		omments
COC completed properly?			Y	Signed by both field scientists and labs	personnel
All requested analysis completed			Y		
Samples received intact and chilled?			Y		
Samples analysed within appropiate holding times?			Y		
Sample volumes sufficient for QC analysis? Are there non-NATA accredited methods used?			Y		
Chromatograms supplied as app			N	NA	
Laboratory reports signed by auti			Y	INA	
caboratory reports signed by auti	•	unle Information (Method Blank		RB, Field Blank - FB, Trip Blank - TB)	
Туре		ample ID	(- MD, Killbate Dialik -	Comments	
Trip Blank	36	NA NA		Comments	
Method Blank		NA NA			
Rinsate		NA NA			~ \ \
Tanoato		10.1			()-3
		Т	rip Spike Information		<i>A</i>
Amatric	Cuiles Come				V
Analyte	Spike Concentrations	Recovery Concentration	n % Recovery	Co	omments
				No trip spike was su	ıbmitted as per QAQC plan.
		Laboratory	Control Spike (LCS) A	nalyses	
Analyte Gr	oup			Comments	
		All LCS were within the laborato	ry control limit.		
				.6	
		Mate	rix Spike (MS) Analyse	S	
Analyte Gr	oup			Comments	
		All MS results were within the la	boratory control limit.	<u> </u>	
			<u></u>		
			- 0		
			ry Duplicates (LD) Ana		
Analyte Group	Analyte(s)	Sample ID	() } (Comments	
			All results were within t	he laboratory control limits.	
				/	
		Field	Duplicates (FD) Analys	202	
Analyte Group	Primary ID	Duplicate ID	Dupiloutes (1 D) Paralys	Comments	
Analyte Group	i iiiiai y ib	Bupilicate IB		Comments	
		70			
		Field	Triplicates (FT) Analys	es	
Analyte Group	Primary ID	Triplicate ID	, , , ,	Comments	
	•				
		Surrogate C	ompound Monitoring	Analyses	
Analyte Group	Analyte(s)			Comments	
		All surrogate recoveries within a	cceptable control limits.		
	. 6	-	•		
	<u> </u>				
\longrightarrow	,		Overall Comments		
•					
This batch has been validated an	d is considered suitable fo	r environmnetal interpretive use.			

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 * When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

 Performed By:
 Sch4p4(6) Per
 Checked By
 Sch4p4(

 Date:
 29/05/2014
 Date: 29/05/2014

22-095 File B Page 334 of 406
U\Env\2008\087673045 - Kwikleen Dry Cleaners, Pease St\Correspondence Out\056 Attachments\Appendix D\4. 087679045-056-March GME Data Validation.xlsx

rimanı laharete		Kwikleen Dry C	ICAIICIS	Project Number:	087673045 CE100447
rimary Laboratory: econdary Laboratory:		SGS NA		Workorder Number: Workorder Number:	CE109447
ate Sampled:		16/04/201	4	Sample Medium:	NA Water
ate dampied.			Sample Information	Cample Medium.	Water
umber of Primary Samples	:	4		riplicate Samples:	-
umber of Duplicate Sample		-		ther QAQC Samples:	-
		Documentation	and Sample Handling	Information	
			Y/N		mments
OC completed properly?			Υ	Signed by both field scientists and labs pe	ersonnel
Il requested analysis complet			Y		
amples received intact and cl amples analysed within appro			Y		
ample volumes sufficient for			Y		
re there non-NATA accredite			N		
hromatograms supplied as a				NA	
aboratory reports signed by a			Υ		
		ple Information (Method Blank	c - MB, Rinsate Blank -	RB, Field Blank - FB, Trip Blank - TB)	
Type	Sa	ample ID		Comments	
Trip Blank		NA			
Method Blank		NA			
Rinsate		NA			07
		_	de Outles let		
	T	Ti	rip Spike Information		
Analyte	Spike Concentrations	Recovery Concentration	on % Recovery	Con	mments
				No trip spike was sub	omitted as per QAQC plan.
				1.10 0.10 00.00	and the second point
	•	Laboratory	Control Spike (LCS)	Analyses	
Analyte	Group			Comments	
		All LCS were within the laborato	ry control limit.		
A l4	0	Mati	rix Spike (MS) Analyse		
Analyte	Group	No matrix anikas required		Comments	
		No matrix spikes required.			
			~5	-01	
		Laborato	ory Duplicates (LD) An	alyses	
Analyte Group	Analyte(s)	Laborato Sample ID	ory Duplicates (LD) An	alyses Comments	
Analyte Group	Analyte(s)		ory Duplicates (LD) An	Comments	
Analyte Group	Analyte(s)			Comments	
Analyte Group	Analyte(s)	Sample ID	No laboratory duplicate	Comments s required.	
		Sample ID		Comments s required.	
Analyte Group Analyte Group	Analyte(s) Primary ID	Sample ID	No laboratory duplicate	Comments s required.	
		Sample ID	No laboratory duplicate	Comments s required.	
		Sample ID	No laboratory duplicate	Comments s required.	
		Sample ID Field Duplicate ID	No laboratory duplicate Duplicates (FD) Analys	Comments s required. Sees Comments	
		Sample ID Field Duplicate ID	No laboratory duplicate	Comments s required. Sees Comments	
Analyte Group	Primary ID	Sample ID Field Duplicate ID Field	No laboratory duplicate Duplicates (FD) Analys	Comments s required. Sees Comments	
Analyte Group	Primary ID	Sample ID Field Duplicate ID Field	No laboratory duplicate Duplicates (FD) Analys	Comments s required. Sees Comments	
Analyte Group	Primary ID	Sample ID Field Duplicate ID Field Triplicate ID	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys	Comments s required. Comments Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID	No laboratory duplicate Duplicates (FD) Analys	Comments s required. Sees Comments Comments Comments	
Analyte Group	Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Comments Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	
Analyte Group Analyte Group	Primary ID Primary ID	Sample ID Field Duplicate ID Field Triplicate ID Surrogate C	No laboratory duplicate Duplicates (FD) Analys Triplicates (FT) Analys compound Monitoring cceptable control limits.	Comments s required. Sees Comments Comments Comments	

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 * When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

 Performed By:
 Sch4p4(6) Pe
 Checked By Sch4p4(

 Date:
 29/05/2014
 Date: 29/05/2014

22-095
Golder Associates Pty Ltd:

Page 335 of 406
Data Validation.xlsx

Discrete Brown and the provided High Page 335 of 406
Data Validation.xlsx

Project Name:		Kwikleen Dry C	leaners	Project Number:	087673045
Primary Laboratory:		SGS		Workorder Number:	CE109936
Secondary Laboratory:		NA		Workorder Number:	NA
Date Sampled:		14/05/201	4	Sample Medium:	Water
			Sample Information		
Number of Primary Samples:		4		riplicate Samples:	-
Number of Duplicate Samples:	:	-	Number of O	ther QAQC Samples:	-
		Documentation	and Sample Handling	Information	
			Y/N		omments
COC completed properly?			Y	Signed by both field scientists and labs p	personnel
All requested analysis completed			Y		
Samples received intact and chill			Y		
Samples analysed within appropriate holding times?			Y		
Sample volumes sufficient for QC analysis? Are there non-NATA accredited methods used?			N N		
Chromatograms supplied as app				NA	
Laboratory reports signed by aut			Y		
		ple Information (Method Blank		RB, Field Blank - FB, Trip Blank - TB)	
Туре		imple ID		Comments	
Trip Blank		NA NA			<u> </u>
Method Blank		NA			
Rinsate		NA			
				_	0
		Т	rip Spike Information		
Analyte	Spike Concentrations	Recovery Concentration	on % Recovery		omments
Analyte	Spike Concentrations	Recovery Concentration	76 Recovery		Jilliletits
				No trip spike was su	bmitted as per QAQC plan.
		Laboratory	Control Spike (LCS) A		
Analyte Gr	oup			Comments	
		All LCS were within the laborato	ry control limit.		
		Billion	dis Cuilso (MC) Amplicadi		
Amalista Co		Wati	rix Spike (MS) Analyse		
Analyte Gr	оир	No matrix spikes required.		Comments	
		No matrix spikes required.	Co		
			25	- ()	
		Laborato	ry Duplicates (LD) Ana	alvses	
Analyte Group	Analyte(s)	Sample ID		Comments	
, , , , , , , , , , , , , , , , , , ,	, , , , ,		No laboratory duplicates		
		4			
		Field	Duplicates (FD) Analys	es	
Analyte Group	Primary ID	Duplicate ID		Comments	
			Triplicates (FT) Analys		
Analyte Group	Primary ID	Triplicate ID	<u> </u>	Comments	
		() X			
		Surrogate C	ompound Monitoring	Analyses	
Analyte Group	Analyte(s)	Juli Ogale C	pound monitoring	Comments	
7 inalyte G. Gup	, many to (o)	All surrogate recoveries within a	ccontable control limits		
		All surrogate recoveries within a	cceptable control limits.		
	(1/2)				
)*		Overall Comments		
This batch has been validated an	d is considered suitable fo	r environmnetal interpretive use.			

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

 * When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

22-095
Golder Associates Pty Ltd:

| Signature | Page 336 of 406 | Data Validation.xlsx | Page 336 of 406 | Data Validation.xlsx | Data V

Project Name:		Kwikleen Dry C	leaners	Project Number:	087673045
Project Name: Primary Laboratory:		Eurofins Air		Workorder Number:	1405350
Secondary Laboratory:		NA	601100	Workorder Number:	1405350 NA
Date Sampled:		12/05/201	14	Sample Medium:	Soil Vapour
Date Gampiea.			Sample Information	ошпри месиит.	Con vapour
Number of Primary Samples	:	2		riplicate Samples:	-
Number of Duplicate Sample		1		Other QAQC Samples:	1
Tunnor or Dupmouto oumpre			and Sample Handling	i	·
		2004110114401	Y/N		omments
COC completed properly?			Y	Signed by both field scientists and labs	
All requested analysis complet	ed?		Y		
Samples received intact and c	hilled?		Y		
Samples analysed within appro	opiate holding times?		Y		
Sample volumes sufficient for	QC analysis?		Υ		
Are there non-NATA accredite	d methods used?		N		
Chromatograms supplied as a	ppropriate?			NA	
Laboratory reports signed by a	uthorised personnel?		Υ		
	QAQC San	nple Information (Method Blanl	k - MB, Rinsate Blank -	RB, Field Blank - FB, Trip Blank - TB)	
Type	S	ample ID		Comments	
Field Blank		FB01	No detects in field blant	ζ.	
Method Blank		NA			
Rinsate		NA			
	1	Т	rip Spike Information		
Analyte	Spike Concentrations	Recovery Concentration	n % Recovery	C	omments
	•	-		.CD	
				No trip spike was su	bmitted as per QAQC plan.
					
		Laboratory	Control Spike (LCS) A	malyana	
Amaluta	C	Laboratory	Control Spike (LCS) A		
Analyte				Comments	
NA NA	\				
					
		Mat	rix Spike (MS) Analyse	s	
Analyte	Group	I	rix opine (mo) Analyse	Comments	
NA NA	•		0,5	Comments	
	•				
			.r()		
		Laborato	ory Duplicates (LD) Ana	alyses	
Analyte Group	Analyte(s)	Sample ID		Comments	
			No laboratory duplicate	s required.	
				·	
		Field	Duplicates (FD) Analys	ses	
Analyte Group	Primary ID	Duplicate ID		Comments	
Ethanol	SVW17	DUP01	RPD of 80%		
Acetone	SVW17	DUP01	RPD of 61%		
Trichloroethene	SVW17	DUP01	RPD of 107%		
Toluene	SVW17	DUP01	RPD of 115%		
Tetrachloroethene	SVW17	DUP01	RPD of 191%		
m,p-Xylene	SVW17	DUP01	RPD of 92%		
		Surrogate C	ompound Monitoring		
Analyte Group	Analyte(s)			Comments	
		All surrogate recoveries within a	cceptable control limits.		
- 4	7		Overall Comments		
				ment failure, the field duplicate could not be lytes. This is not considered to affect the ov	taken in conjunction with the primary sample and erall results.
This batch has been validated	and is considered suitable fo	or environmnetal interpretive use	<u> </u>		

Note: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form.

*When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated

Performed By: Sch4p4(6) P
Date: 29/05/2014

Checked By SCh4p4(Date: 29/05/2014

Golder Associates Pty Ltd.

J:\Env\2008\087673045 - Kwikleen Dry Cleaners, Pease St\Correspondence Out\056 Attachments\Appendix D\7. 087673045-056-May Soil Vapour Data Validation.xlsx

22-095 File B Page 337 of 406

APPENDIX E

Summary of All Groundwater and Soil Vapour Results

		ObN	air 4.0 Diabless attends	Triables alledon	T-4
		ChemName output unit	cis-1,2-Dichloroethene μg/l	Trichloroethylene μg/l	Tetrachloroethene µg/l
		LOR	Variable	Variable	Variable
Field_ID	Sampled_Date	SDG			
MW1KK	30/04/2009	SE68964	5.1	26	8.5
MW1KK	28/09/2009	SE72570	44	500	90
MW1KK	9/02/2010	SE75787	36	400	400
MW1KK MW1KK	17/06/2010 14/07/2010	SE79195 SE79866	30 24	340 360	53 86
MW1KK	18/08/2010	SE80754-R	21	360	55
MW1KK	21/09/2010	SE81613	34	460	80
MW1KK	21/10/2010	SE82422	25	330	27
MW1KK MW1KK	23/11/2010 6/01/2011	SE83518 SE84456	26 9.5	340 280	33 28
MW1KK	17/02/2011	SE85555	9.7	92	8.8
MW1KK	17/03/2011	SE86297	6.4	120	12
MW1KK	30/05/2011	SE87927	15	160	15
MW1KK MW1KK	29/06/2011 29/07/2011	SE88590 SE89143	16 6.1	200 44	13 4.8
MW1KK	31/08/2011	SE101504	6.5	33	2.8
MW1KK	30/09/2011	SE102344	16	130	8.5
MW1KK	31/10/2011	SE102988	12	100	9
MW1KK MW1KK	25/11/2011 13/12/2011	SE103639 SE104058	14 <5	120 120	7.5 7.3
MW1KK	20/01/2012	SE104825	7.4	52	14
MW1KK	29/02/2012	SE105949	27	140	29
MW2KK	30/04/2009	SE68964	<5	<5	86
MW2KK	28/09/2009	SE72570	5.7	51	12
MW3KK	30/04/2009	SE68964	<5 <5	<5	49
MW3KK MW3KK	28/09/2009 9/02/2010	SE72570 SE75787	<5 1.3	8.8 6.8	150 120
MW4KK	30/04/2009	SE68964	640	550	1000
MW4KK	28/09/2009	SE72570	720	980	1300
MW4KK	16/10/2009	SE73085	660	970	2200
MW4KK MW4KK	30/10/2009 1/12/2009	SE73401-R2 SE74208-R	700 1400	1300 1700	1900 3400
MW4KK MW4KK	9/02/2010	SE74208-R SE75787	1300	1600	6700
MW4KK	19/05/2010	SE78399	1100	1300	11000
MW4KK	17/06/2010	SE79195	760	1100	13000
MW4KK	14/07/2010	SE79866	790	1100	14000
MW4KK	18/08/2010	SE80754-R	1200	1300	13000
MW4KK MW4KK	21/09/2010 21/10/2010	SE81613 SE82422	1600 1300	1300 540	14000 11000
MW4KK	23/11/2010	SE83518	1800	560	6600
MW4KK	6/01/2011	SE84456	650	280	730
MW4KK	17/02/2011	SE85555	510	160	4700
MW4KK	17/03/2011	SE86297	330	62	510
MW4KK MW4KK	30/05/2011 29/06/2011	SE87927 SE88590	2600 1100	830 610	830 21000
MW4KK	29/07/2011	SE89143	1000	310	2400
MW4KK	31/08/2011	SE101504	1200	220	2800
MW4KK	30/09/2011	SE102344	1800	650	14000
MW4KK	31/10/2011	SE102988	1000	460	10000
MW4KK MW4KK	25/11/2011 13/12/2011	SE103639 SE104058	1000 830	680 440	11000 6800
MW4KK	20/01/2012	SE104825	1200	1000	8400
MW4KK	29/02/2012	SE105949	950	670	4600
MW1CP	Apr-07	Douglas Partners	20	63	520
MW1CP	Jul-07	Le Vert	68	95	785
MW1CP MW1CP	Oct-07 Mar-08	Le Vert Le Vert	52 11	225 8.7	329 8.2
MW1CP	11/12/2008	66170	<5	<5	<5
MW1CP	30/04/2009	SE68964	120	170	160
MW1CP	28/09/2009	SE72570	100	160	170
MW1CP MW1CP	16/10/2009 30/10/2009	SE73085 SE73401-R2	190 61	290 160	240 130
MW1CP	1/12/2009	SE74208-R	57	99	240
MW1CP	9/02/2010	SE75787	4.2	7.8	31
MW1CP	17/06/2010	SE79195	140	69	110
MW1CP	14/07/2010	SE79866	140	83	140
MW1CP MW1CP	18/08/2010 21/09/2010	SE80754-R SE81613	96 61	78 58	200 160
MW1CP	21/10/2010	SE82422	54	56	380
MW1CP	23/11/2010	SE83518	330	150	590
MW1CP	6/01/2011	SE84456	4.6	7.2	96
MW1CP MW1CP	17/02/2011 17/03/2011	SE85555 SE86297	2.6 <0.5	0.7 <0.5	16 6
MW1CP	30/05/2011	SE87927	240	64	110
MW1CP	29/06/2011	SE88590	4	6.8	33
MW1CP	29/07/2011	SE89143	160	18	36
MW1CP	31/08/2011	SE101504	230	32	44
MW1CP MW1CP	30/09/2011 31/10/2011	SE102344 SE102988	220 43	70 9.2	94 45
MW1CP	25/11/2011	SE103639	84	37	84
MW1CP	13/12/2011	SE104058	110	51	89
MW1CP	20/01/2012	SE104825	<5	<5	<5
MW1CP	29/02/2012	SE105949	<5	<5	2.1
MW1CP MW1CP	9/07/2012 20/09/2013	SE109987-1 CE105952	22 390	18 170	3.8 42
MW1CP MW1CP	19/12/2013	CE107544 R0	130	120	27
MW1CP	17/01/2014	CE107801 R0	5.8	7.2	6.3
MW1CP	18/02/2014	CE108420 R0	9.7	10	12
MW1CP	18/03/2014	CE108914 R0	5.1	7	8.1
MW1CP MW1CP	15/04/2014 14/05/2014	CE109447 R0 CE109936 R0	0.5 8	2.2 8.8	5.7 13
	/00/2014	102.00000110	I [×]	0.0	.~

		Chamblama	aia 1.2 Diablara athana	Trichlere ethylene	Totrochloroothono
		ChemName output unit	cis-1,2-Dichloroethene	Trichloroethylene µg/l	Tetrachloroethene µg/l
		LOR	Variable	Variable	Variable
Field_ID	Sampled_Date	SDG		-	-
MW2CP	Apr-07	Douglas Partners	31	110	360
MW2CP	Jul-07	Le Vert	222	170	526
MW2CP	Oct-07	Le Vert Le Vert	291 20	814	2070
MW2CP MW2CP	Mar-08 30/04/2009	SE68964	150	16 210	62 650
MW2CP	28/09/2009	SE72570	250	1400	650
MW2CP	16/10/2009	SE73085	130	610	1600
MW2CP	30/10/2009	SE73401-R2	69	410	970
MW2CP MW2CP	1/12/2009 9/02/2010	SE74208-R SE75787	200 300	440 730	3200 2600
MW2CP	5/05/2010	SE77981	140	830	4400
MW2CP	19/05/2010	SE78399	270	1600	3400
MW2CP	17/06/2010	SE79195	130	600	1900
MW2CP MW2CP	14/07/2010 18/08/2010	SE79866 SE80754-R	150 140	580 770	2400 3400
MW2CP	21/09/2010	SE81613	200	410	7100
MW2CP	21/10/2010	SE82422	78	240	2600
MW2CP	23/11/2010	SE83518	80	200	2600
MW2CP	6/01/2011	SE84456	87	49	220
MW2CP MW2CP	17/02/2011 17/03/2011	SE85555 SE86297	420 150	630 64	1700 180
MW2CP	30/05/2011	SE87927	190	900	3000
MW2CP	29/06/2011	SE88590	100	510	3100
MW2CP	29/07/2011	SE89143	79	120	800
MW2CP	31/08/2011	SE101504	58 110	200 440	610
MW2CP MW2CP	30/09/2011	SE102344-R1 SE102988-R2	180	120	2100 490
MW2CP	25/11/2011	SE103639	300	220	880
MW2CP	13/12/2011	SE104058	200	300	1300
MW2CP	20/01/2012	SE104825	110	1200	1900
MW2CP	29/02/2012	SE105949	180 510	1200 2000	1200 3800
MW2CP MW3CP	09/07/12 Apr-07	SE109987-1 Douglas Partners	38	160	210
MW3CP	Jul-07	Le Vert	43	293	288
MW3CP	Oct-07	Le Vert	26	309	358
MW3CP	Mar-08	Le Vert	6.3	6.3	6.9
MW3CP MW3CP	30/04/2009 28/09/2009	SE68964 SE72570	<50 28	210 170	110 86
MW3CP	9/02/2010	SE75787	27	95	75
MW3CP	09/07/12	SE109987-1	33	72	15
MW3CP	19/12/2013	CE107544 R0	450	<0.5	<0.5
MW4CP	Apr-07	Douglas Partners	6	7	110
MW4CP MW4CP	Jul-07 Oct-07	Le Vert Le Vert	36 <0.5	24 <0.5	171 10
MW4CP	Mar-08	Le Vert	1.6	0.6	3.8
MW4CP	30/04/2009	SE68964	<5	<5	<5
MW4CP	28/09/2009	SE72570	DRY	DRY	DRY
MW4CP	19/09/2013	CE105952	2.3	2	<0.5
MW4CP MW5CP*	19/12/2013 Apr-07	CE107544 R0 Douglas Partners	1.4	2.9 350	<0.5 1000
MW5CP	Jul-07	Le Vert	80	462	1480
MW5CP	Oct-07	Le Vert	94	929	1980
MW5CP	Mar-08	Le Vert	63	39	73
MW5CP MW5CP	30/04/2009 28/09/2009	SE68964 SE72570	<5 220	<5 1700	<5 1700
MW5CP	16/10/2009	SE73085	270	1800	1400
MW5CP	30/10/2009	SE73401-R2	110	1200	1000
MW5CP	1/12/2009	SE74208-R	320	1500	1800
MW5CP	9/02/2010	SE75787	250	700	1300
MW5CP MW5CP	17/06/2010	SE79195	0.5 14	3.6 40	12 56
	114/07/2010	ISE79866			
MW5CP MW5CP	14/07/2010 18/08/2010	SE79866 SE80754-R	DRY	DRY	DRY
MW5CP MW5CP	18/08/2010 21/10/2010	SE80754-R SE82422		DRY 3.6	13
MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010	SE80754-R SE82422 SE83518	DRY <0.5	DRY 3.6 4	13 10
MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011	SE80754-R SE82422 SE83518 SE84456	DRY	DRY 3.6	13
MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled	DRY <0.5 1 8.9	DRY 3.6 4 93	13 10 240 -
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927	DRY <0.5 1 8.9 - 24 11	DRY 3.6 4 93 - 38.0 24.0	13 10 240 - 130 15
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011 29/06/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE88590	DRY <0.5 1 8.9 - 24 11 57	DRY 3.6 4 93 - 38.0 24.0 81.0	13 10 240 - 130 15 600
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011 29/06/2011 29/07/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE80297 SE87927 SE87927 SE88590 SE89143	DRY <0.5 1 8.9 - 24 11 57 2.8	DRY 3.6 4 93 - 38.0 24.0 81.0	13 10 240 - 130 15 600
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011 29/06/2011 29/07/2011 31/08/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE8727 SE88590 SE89143 SE801504	DRY <0.5 1 8.9 - 24 111 57 2.8 37	DRY 3.6 4 93 - 38.0 24.0 81.0 110.0	13 10 240 - 130 15 600 14
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011 29/06/2011 29/07/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE80297 SE87927 SE87927 SE88590 SE89143	DRY <0.5 1 8.9 - 24 11 57 2.8	DRY 3.6 4 93 - 38.0 24.0 81.0	13 10 240 - 130 15 600
MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP MW5CP	18/08/2010 21/10/2010 23/11/2010 6/01/2011 17/02/2011 30/05/2011 30/05/2011 29/07/2011 31/08/2011 30/09/2011 31/10/2011 35/11/2011	SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE87927 SE88590 SE88143 SE101504 SE102344 SE102344 SE102388 SE10339	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 <0.5	DRY 3.6 4 93 - 38.0 24.0 81.0 14.0 1110.0 180.0 10 27	13 10 240 240 130 15 600 14 97 320 22 69 9
MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP	18/08/2010 23/11/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 30/05/2011 29/06/2011 29/07/2011 31/08/2011 30/09/2011 31/10/2011 31/10/2011 13/12/2011	SE80754-R SE82422 SE83518 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE87927 SE89143 SE101504 SE102344 SE102388 SE102369 SE102688 SE102688 SE102688	DRY -0.5 1 8.924 111 57 2.8 37 100 320.5 1.3	DRY 3.6 4 93 38.0 24.0 81.0 110.0 110.0 127 8	13 10 240 - 130 15 600 14 97 320 22 69 29
MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 12/03/2011 29/06/2011 29/06/2011 29/07/2011 30/09/2011 30/09/2011 25/11/2011 13/12/2011 13/12/2011	SE80754-R SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE88590 SE89143 SE101504 SE102344 SE102344 SE102348 SE103639 SE104058 SE104058	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 <0.5 1.3 44	DRY 3.6 4 4 93 - 38.0 24.0 81.0 14.0 1110.0 180.0 10 27 8	13 10 240
MWSCP MWSCP	18/08/2010 23/11/2010 23/11/2010 60/1/2011 17/02/2011 17/02/2011 17/03/2011 30/05/2011 29/07/2011 30/09/2011 31/08/2011 31/08/2011 31/10/2011 13/12/2011 13/12/2011 29/07/2012 29/07/2012	SE80754-R SE80422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE87927 SE88590 SE88590 SE89143 SE101504 SE102344 SE102988 SE104568 SE104625 SE104825	DRY <0.5 1 8.9 - 24 11 57 2.8 37 100 3.2 <0.5 1.3 44 992	DRY 3.6 4 93 - 38.0 24.0 81.0 14.0 110.0 180.0 10 27 8 44 1160	13
MW5CP	18/08/2010 23/11/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 17/03/2011 29/07/2011 29/07/2011 30/05/2011 30/05/2011 30/05/2011 30/09/2011 31/10/2011 25/11/2011 20/01/2012 29/02/2012 29/02/2012	SE80754-R SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE8727 SE88590 SE89143 SE101504 SE102344 SE102344 SE102344 SE102348 SE103639 SE104058 SE104058 SE104058 SE104058	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 <0.5 1.3 44	DRY 3.6 4 4 93 - 38.0 24.0 81.0 14.0 1110.0 180.0 10 27 8	13 10 240
MWSCP	18/08/2010 23/11/2010 23/11/2010 6/01/2011 17/02/2011 17/03/2011 17/03/2011 29/06/2011 29/07/2011 31/08/2011 30/09/2011 31/08/2011 30/09/2011 31/10/2011 25/11/2011 20/07/2012 29/07/2011 29/07/2011 20/01/2012 29/02/2012	\$E80754-R \$E80754-R \$E82422 \$E83518 \$E824456 Could not be sampled \$E86297 \$E88590 \$E87927 \$E88590 \$E89143 \$E101504 \$E102344 \$E102344 \$E102344 \$E102346 \$E104658 \$E104658 \$E104825 \$E104825 \$E104825 \$E104825 \$E105949 CE107544 R0 Douglas Partners Le Vert	DRY -0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 - 0.5 1.3 44 92 270 - 0.5 6	DRY 3.6 4 93	13 10 240 - 130 15 600 14 97 320 22 26 69 29 1000 240 38 70 <5
MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 8/01/2011 17/02/2011 17/03/2011 17/03/2011 29/06/2011 29/06/2011 29/06/2011 29/06/2011 30/09/2011 35/08/2011	SE80754-R SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE88590 SE89143 SE101504 SE102344 SE102344 SE102348 SE103639 SE104058 SE105949 CE107544 RO Douglas Partners Le Vert Le Vert	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 <0.5 1.3 44 92 270 <0.5 6 DRY	DRY 3.6 4 93 - 38.0 24.0 81.0 114.0 1110.0 180.0 10 27 8 44 160 1110 20 8 B DRY	13
MWSCP MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 23/11/2010 8/01/2011 17/03/2011 17/03/2011 29/06/2011 29/07/2011 31/08/2011 30/09/2011 30/09/2011 30/09/2011 25/11/2011 25/11/2011 20/01/2012 29/02/2012 13/12/2011 20/01/2012 13/12/2013 Apr-07 Jul-07 Oct-07 Mar-08	\$E80754-R \$E80754-R \$E82422 \$E83518 \$E824456 Could not be sampled \$E80297 \$E8727 \$E88590 \$E8101504 \$E101504 \$E102344 \$E102344 \$E102344 \$E102344 \$E104058 \$E104658 \$E104658 \$E104658 \$E104658 \$E104658 \$E10544 R0 Douglas Partners Le Vert Le Vert Le Vert	DRY -0.5 1 8.9 24 111 57 2.8 37 100 3.2	DRY 3.6 4 93 38.0 24.0 81.0 110.0 110.0 110.0 27 8 44 160 110 20 8 DRY	13
MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 23/11/2010 6/01/2011 17/03/2011 17/03/2011 29/06/2011 29/06/2011 29/06/2011 30/09/2011 30/09/2011 31/08/2011 30/09/2011 25/11/2011 25/11/2011 20/01/2012 29/02/2012 29/02/2012 30/04/2019	SE80754-R SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE8727 SE88590 SE89143 SE101504 SE102344 SE102344 SE102344 SE102348 SE104058 SE104058 SE104058 SE104058 SE104058 SE104058 SE104058 SE104058 SE104058	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 - 0.5 1.3 44 92 270 - 0.5 6 DRY - 0.5 - 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	DRY 3.6 4 93 - 38.0 24.0 81.0 14.0 110.0 180.0 10 27 8 8 44 160 1110 20 8 8 DRY 1 1 7.5	13 10 240 130 15 600 14 97 320 22 69 29 11000 240 38 70 45 DRY 1 1 6.6
MWSCP MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 23/11/2010 8/01/2011 17/03/2011 17/03/2011 29/06/2011 29/07/2011 31/08/2011 30/09/2011 30/09/2011 30/09/2011 25/11/2011 25/11/2011 20/01/2012 29/02/2012 13/12/2011 20/01/2012 13/12/2013 Apr-07 Jul-07 Oct-07 Mar-08	\$E80754-R \$E80754-R \$E82422 \$E83518 \$E824456 Could not be sampled \$E80297 \$E8727 \$E88590 \$E8101504 \$E101504 \$E102344 \$E102344 \$E102344 \$E102344 \$E104058 \$E104658 \$E104658 \$E104658 \$E104658 \$E104658 \$E10544 R0 Douglas Partners Le Vert Le Vert Le Vert	DRY -0.5 1 8.9 24 111 57 2.8 37 100 3.2	DRY 3.6 4 93 38.0 24.0 81.0 110.0 110.0 110.0 27 8 44 160 110 20 8 DRY	13
MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 6/01/2011 17/03/2011 17/03/2011 17/03/2011 29/06/2011 29/06/2011 29/06/2011 29/06/2011 29/07/2011 30/09/2011 35/09/2011 25/11/2011 13/12/2011 13/12/2011 13/12/2011 13/12/2011 13/12/2011 25/01/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 29/02/2012 20/09/2013 Oct-07	SE80754-R SE80754-R SE82422 SE83518 SE84456 Could not be sampled SE86297 SE87927 SE88590 SE89143 SE101504 SE102344 SE102344 SE102344 SE102344 CE107544 R0 Douglas Partners Le Vert Le Vert Le Vert Le Vert SE68964 SE72570 CE107552	DRY <0.5 1 8.9 - 24 111 57 2.8 37 100 3.2 <0.5 1.3 44 92 270 <0.5 6 DRY <0.5 <5 DRY <0.5 <5 DRY <0.5 <5 DRY <0.5 <5 DRY	DRY 3.6 4 4 93 - 18.0 81.0 81.0 114.0 1110.0 180.0 10 27 8 44 160 110 20 8 DRY 1 1 7.5 DRY <-0.5 6	13 10 240
MWSCP	18/08/2010 23/11/2010 23/11/2010 23/11/2010 23/11/2010 6/01/2011 17/03/2011 17/03/2011 12/03/2011 29/06/2011 31/08/2011 30/05/2011 31/08/2011 30/09/2011 31/08/2011 29/07/2011 29/07/2011 29/07/2011 29/07/2011 29/07/2011 20/01/2012 29/02/2012 19/12/2013 Apr-07 Jul-07 Oct-07 Mar-08 30/04/2009 28/09/2009	\$E80754-R \$E80754-R \$E82422 \$E83518 \$E824456 Could not be sampled \$E80297 \$E88590 \$E8727 \$E88590 \$E89143 \$E101504 \$E102344 \$E102344 \$E102344 \$E102344 \$E102344 \$E10588 \$E10485 \$E10485 \$E10485 \$E10485 \$E10485 \$E10485 \$E10485 \$E10485 \$E10485 \$E105849 \$E10485 \$E10485 \$E105849 \$E2570 \$E2570 \$E2570 \$E2570 \$E2570	DRY -(0.5) 1 8.9 24 111 57 2.8 37 100 3.2 -(0.5) 1.3 44 92 270 -(0.5) 6 DRY -(0.5) -(5) -(5) -(5) -(5) -(5) -(5) -(5) -(DRY 3.6 4 93 38.0 24.0 91.0 110.0 110.0 110.0 127 8 444 110.0 110 20 8 DRY 11 7.5 DRY	13 10 240

		ChemName	cis-1,2-Dichloroethene	Trichloroethylene	Tetrachloroethene
		output unit LOR	μg/l Variable	μg/l Variable	μg/l Variable
Field_ID	Sampled_Date	SDG	variable	variable	variable
MW8CP MW8CP	Oct-07 Mar-08	Le Vert Le Vert	<5 <0.5	<5 <0.5	<5 <0.5
MW8CP MW8CP	30/04/2009 29/09/2009	SE68964 SE72570	<5 <5	<5 <5	<5 <5
MW9CP MW9CP	Oct-07	Le Vert Le Vert	<5 <0.5	<5 <0.5	<5 <0.5
MW9CP	Mar-08 30/04/2009	SE68964	<5	7.1	6.8
MW9CP MW10CP	28/09/2009 Oct-07	SE72570 Le Vert	<5 <5	<5 <5	<5 <5
MW10CP MW10CP	Mar-08 30/04/2009	Le Vert SE68964	1300 <5	<0.5 <5	2.6
MW10CP	28/09/2009	SE72570	<5 140	<5 630	<5 2200
MW11CP MW11CP	5/05/2010 19/05/2010	SE77981 SE78399	140	670	3000
MW11CP MW11CP	17/06/2010 14/07/2010	SE79195 SE79866	110 94	670 650	2500 2500
MW11CP MW11CP	18/08/2010 21/09/2010	SE80754-R SE81613	61 52	740 830	3000 3400
MW11CP MW11CP	21/10/2010 23/11/2010	SE82422 SE83518	47 71	460 1000	1600 2700
MW11CP	6/01/2011	SE84456	59	990	3100
MW11CP MW11CP	17/02/2011 17/03/2011	SE85555 SE86297	65 59	530 440	1500 1100
MW11CP MW11CP	30/05/2011 29/06/2011	SE87927 SE88590	100 64	650 680	840 1100
MW11CP MW11CP	29/07/2011 31/08/2011	SE89143 SE101504	79 35	290 190	590 270
MW11CP MW11CP	30/09/2011 31/10/2011	SE102344 SE102988	55 31	610 250	1100 390
MW11CP	25/11/2011	SE103639	<50	730	1100
MW11CP MW11CP	13/12/2011 20/01/2012	SE104058 SE104825	51 56	690 1200	1000 1400
MW11CP MW12CP	29/02/2012 5/05/2010	SE105949 SE77981	29 390	300 1600	400 3800
MW12CP	19/05/2010 17/06/2010	SE78399	270	1600	4100
MW12CP MW12CP	14/07/2010	SE79195 SE79866	270 220	1200 2000	2200 2500
MW12CP MW12CP	18/08/2010 21/09/2010	SE80754-R SE81613	180 150	1100 1200	2600 3400
MW12CP MW12CP	21/10/2010 23/11/2010	SE82422 SE83518	130 110	570 790	1200 1400
MW12CP	6/01/2011	SE84456	57	760	1500
MW12CP MW12CP	17/02/2011 17/03/2011	SE85555 SE86297	91	370 400	3600 1000
MW12CP MW12CP	30/05/2011 29/06/2011	SE87927 SE88590	140 190	620 740	3400 1700
MW12CP MW12CP	31/08/2011 30/09/2011	SE101504 SE102344	120 140	240 700	420 1400
MW12CP MW12CP	31/10/2011 25/11/2011	SE102988 SE103639	1.1	2 560	5.4 1400
MW12CP	13/12/2011	SE104058	82	430	1300
MW12CP MW12CP	20/01/2012 29/02/2012	SE104825 SE105949	190 580	760 450	2100 1000
MW12CP MW13CP	19/12/2013 5/05/2010	CE107544 R0 SE77981	290 25	1600 160	800 440
MW13CP MW13CP	19/05/2010	SE78399 SE79195	26 14	120	350 190
MW13CP	17/06/2010 14/07/2010	SE79866	14	110	180
MW13CP MW13CP	18/08/2010 21/09/2010	SE80754-R SE81613	8.1 16	100 58	220 160
MW13CP MW13CP	21/10/2010 23/11/2010	SE82422 SE83518	25 30	91 130	110 120
MW13CP MW13CP	6/01/2011 17/02/2011	SE84456 SE85555	32 23	210	150 65
MW13CP	17/03/2011	SE86297	19	59	86
MW13CP MW13CP	30/05/2011 29/06/2011	SE87927 SE88590	9.8	49 58	49 52
MW13CP MW13CP	29/07/2011 31/08/2011	SE89143 SE101504	2.7	14 13	9.3 5.5
MW13CP MW13CP	30/09/2011 31/10/2011	SE102344 SE102988	20	50 52	30 23
MW13CP	25/11/2011	SE103639	15	73	27
MW13CP MW13CP	13/12/2011 20/01/2012	SE104058 SE104825	19 27	64 83	23 31
MW13CP		OE 104020			
INW13CP	29/02/2012 09/07/12	SE105949	0.6	61 70	33
MW13CP MW13CP	09/07/12 19/12/2013	SE105949 SE109987-1 CE107544 R0	0.6 74	70 190	33 110 100
MW13CP MW14CP MW15CP	09/07/12 19/12/2013 12/12/12 18/02/13	SE105949 SE109987-1 CE107544 R0 CE102092 CE102844	0.6 74 230 1.4	70 190 440 5.8	33 110 100 1200 7
MW13CP MW14CP	09/07/12 19/12/2013 12/12/12	SE105949 SE109987-1 CE107544 R0 CE102092	0.6 74 230	70 190 440	33 110 100 1200
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014	SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107501 R0 CE107801 R0 CE108420 R0	0.6 74 230 1.4 3.1 <0.5 2.6	70 190 440 5.8 4.6 0.8	33 110 100 1200 7 1.9 0.7 2.8
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/03/2014	SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107540 R0 CE108910 R0 CE108914 R0 CE108914 R0	0.6 74 230 1.4 3.1 <0.5 2.6 7.3 3.1	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9	33 110 100 1200 7 7 19 0.7 2.8 5.5 4.7
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/03/2014 15/04/2014 18/02/2014 18/02/2014	SE105949 SE109897-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107801 R0 CE108420 R0 CE108420 R0 CE108430 R0 CE108430 R0 CE108430 R0 CE108447 R0 CE109836 R0 CE108936 R0	0.6 74 230 1.4 3.1 <0.5 2.6 7.3 3.1 6.1 3.8	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1	33 110 100 1200 7 1 9 0.7 2.8 5.5 4.7 2.9
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW16CP MW16CP MW16CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/03/2014 15/04/2014 14/05/2014	SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107801 R0 CE108814 R0 CE108814 R0 CE108914 R0 CE108916 R0 CE108916 R0	0.6 74 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 320 9.7	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1	33 110 1100 1200 7 7 1.9 0.7 2.8 5.5 4.7 2.9
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP	09/07/12 19/12/2013 12/12/12 18/02/13 17/01/2014 18/02/2014 18/02/2014 15/04/2014 14/05/2014 14/05/2014 18/02/13 20/09/13 19/12/2013	SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107841 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE109896 R0 CE109844 CE107544 R0 CE109816 R0 CE109817 R0	0.6 74 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180	33 110 1100 1200 7 19 19 07 2.8 5.5 4.7 2.9 14 12 2.2
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP MW16CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2014 18/02/2014 18/02/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014	SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102840 CE102840 CE107801 R0 CE108420 R0 CE108936 R0 CE109936 R0 CE109936 R0 CE109937 R0 CE109947 R0 CE109947 R0 CE10947 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE10847 R0 CE10847 R0 CE10847 R0 CE10847 R0	0.6 74 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180 13 8.1 17	33 110 100 1200 7 1,9 1,9 0,7 2,8 5,5 4,7 2,9 14 12 2 1,7 9,3
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014	SE105949 SE109897-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE102840 CE107841 R0 CE108420 R0 CE108420 R0 CE108430 R0 CE108430 R0 CE108447 R0 CE109844 R0 CE10744 R0 CE10744 R0 CE10744 R0 CE107801 R0 CE107801 R0 CE108447 R0 CE107801 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0	0.6 74 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 3.9 9.7 5.4 23 46 15 27	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 17.3 180 113 8.1 177 32 23	33 110 100 1200 7 19 0.7 2.8 5.5 4.7 2.9 14 12 2 1,7 9.3 12 3.6 1.5
MW13CP MW14CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/13 20/09/13 19/12/2013 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014	SE105949 SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107801 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE109847 R0 CE109897 R0 CE109848 CE109898 R0 CE109848 R0 CE109888 R0 CE108848 R0 CE108898 R0 CE102844 CE105998 R0 CE102848 R0 CE108898 R0 CE108898 R0 CE108898 R0 CE108898 R0 CE108898 R0 CE108998 R0 CE109898 R0 CE109898 R0 CE109898 C0 CE109898 R0 CE109898 C0 CE109898 R0 CE109898 C0 CE109898 R0	0.6 74 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 3.9 9.7 5.4 23 46 115 27 8.2 89	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 1180 113 8.1 177 32 23 30 19 210	33 110 1100 1200 7 7 1.9 0.7 2.8 5.5 4.7 2.9 14 12 2 2 1.7 9.3 12 3.6 1.5 3.7
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW17CP MW17CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2014 18/02/13 17/01/2014 18/02/2014 18/03/2014 18/03/2014 18/02/13 20/09/13 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014	SE105949 SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE108914 R0 CE108914 R0 CE109891 R0 CE109891 R0 CE109814 R0 CE107544 R0 CE108420 R0 CE108420 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108552 CE105852 CE105852 CE105854	0.6 74 230 1.4 3.1 <0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 8.2 89 9.7	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180 13 8.1 17 32 23 30 19 210	33 110 1200 177 19 19 07 2.8 5.5 4.7 2.9 14 12 2 1.7 9.3 12 3.6 1.5 3.7 100 6.2
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW17CP MW17CP MW17CP	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/03/2014	SE105949 SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE10840 R0 CE10840 R0 CE108914 R0 CE109896 R0 CE109897 R0 CE109847 R0 CE109936 R0 CE109847 R0 CE109936 R0 CE102844 CE107801 R0 CE102844 CE107801 R0 CE102847 R0 CE107801 R0 CE108420 R0 CE108420 R0 CE107801 R0 CE108447 R0 CE108447 R0 CE108947 R0 CE107801 R0 CE107801 R0 CE107801 R0	0.6 74 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 8.2 8.9 9.7 17 9.5	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 17.3 180 113 8.1 177 32 23 30 19 210 21 23	33 110 100 1200 7 19 07 2.8 5.5 4.7 2.9 14 12 2 1.7 9.3 112 3.6 1.5 37 100 6.2 11
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW17CP MW17CP MW17CP MW17CP MW17CP MW17CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014	SE105949 SE109897-1 CE107544 R0 CE102092 CE102084 CE107544 R0 CE102844 CE107541 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE108936 R0 CE108936 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE107801 R0 CE10844 R0 CE107801 R0 CE10844 R0 CE107801 R0 CE10844 R0 CE10844 R0 CE10844 R0 CE10844 R0 CE10844 R0 CE10884 R0 CE10884 R0 CE10884 R0 CE10884 R0 CE10884 R0 CE10881 R0	0.6 74 230 1.4 3.1 -0.5 2.8 7.3 3.1 6.1 3.8 320 9.7 5.4 223 46 61 15 27 8.2 89 9.7 17 9.5 35 35	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180 113 8.1 17 32 23 30 19 210 21 21 223 177 12	33 110 110 100 1200 7 19 07 28 55 4.7 2.9 14 12 2.1 17 9.3 11 12 3.6 1.5 37 100 6.2 11 8.4 8.3
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW17CP MW17CP MW17CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 19/12/2013 17/04/2014 18/02/2014	SE105949 SE105947 CE107544 R0 CE102092 CE102094 CE107544 R0 CE107544 R0 CE107841 R0 CE108914 R0 CE108914 R0 CE109814 R0 CE109816 R0 CE109816 R0 CE109817 R0 CE109817 R0 CE109817 R0 CE109818 R0 CE109818 R0 CE109818 R0 CE109818 R0 CE107544 R0 CE109818 R0 CE107541 R0 CE109814 R0 CE108420 R0 CE108420 R0 CE108447 R0 CE108447 R0 CE109814 R0 CE108447 R0 CE108448 R0 CE107544 R0 CE108918 R0 CE108840 R0 CE108840 R0 CE108840 R0 CE107841 R0 CE108440 R0 CE108440 R0 CE108440 R0 CE108440 R0 CE108440 R0 CE108440 R0	0.6 74 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 54 23 46 115 27 8.2 89 9.7 17 9.5	70 190 440 5.8 4.6 0.8 4.6 6.9 8.1 7.3 180 13 8.1 17 32 23 30 19 210 21 223 17	33 110 1100 1200 7 199 0.7 2.8 5.5 5.5 4.7 2.9 14 112 2.1 1.7 9.3 1.5 3.6 1.5 3.7 100 6.2 11 8.4 8.3
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 19/12/2013 17/04/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014	SE105949 SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107544 R0 CE108914 R0 CE108914 R0 CE109891 R0 CE109891 R0 CE109814 R0 CE10982 R0 CE107544 R0 CE108420 R0 CE108420 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE109847 R0 CE109847 R0 CE109847 R0 CE109848 R0 CE107801 R0 CE108918 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108948 R0 CE10848 R0	0.6 74 230 1.4 3.1	70 190 440 5.8 4.6 0.8 8.1 6.9 8.1 7.3 1180 13 8.1 17 32 23 30 19 210 211 23 30 17 12	33 110 1100 1200 7 19 19 07 2.8 5.5 4.7 2.9 14 12 2. 11,7 9.3 12 3.6 1.5 3.7 1000 6.2 11 8.4 8.3 16 8.4 8.3 16
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW18CP MW18CP MW18CP MW18CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2014 18/02/2014	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE102840 CE107841 R0 CE10840 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE108914 R0 CE108936 R0 CE108947 R0 CE108936 R0 CE108947 R0 CE108947 R0 CE107801 R0 CE10840 R0 CE107801 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE108940 R0 CE108940 R0 CE108940 R0 CE108940 R0 CE108962 CE10980 R0 CE108914 R0 CE10980 R0 CE108914 R0 CE10980 R0 CE108914 R0 CE109896 R0 CE108914 R0 CE109896 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE108914 R0 CE109896 R0 CE108936 R0 CE109896 R0 CE109896 R0 CE109844	0.6 74 230 1.4 230 1.4 3.1 -0.5 2.8 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 8.2 89 9.7 17 9.5 35 35 20 28 -1,OR 2,OR	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180 113 8.1 17 32 23 30 19 210 21 21 21 21 21 23 30 49 49 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	33 110 110 1100 1200 7 119 0.7 1.9 2.8 5.5 4.7 2.9 114 12 2 1.7 9.3 112 3.6 1.5 37 1100 6.2 11 1100 6.2 11 1100 6.2 11 12 2 1.7 37 4 8.3 6 8.4 8.3 16 23 4 4.OR 4.OR
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW19CP MW19CP MW19CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/04/2014 18/02/2013 18/02/2013	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107840 R0 CE102840 CE107840 R0 CE10840 R0 CE108936 R0 CE102844 CE105952 CE107801 R0 CE108914 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108840 R0 CE108840 R0 CE108840 R0 CE1088940 R0 CE108896 R0 CE1088914 R0 CE108914 R0 CE109814 R0 CE108814 CE107544 R0 CE102844	0.6 74 230 1.4 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 8.2 89 9.7 117 9.5 20 22 40 27 28 20 28 40 20 20 28 40 20 20 20 20 21	70 190 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 17 3.3 180 11 23 30 19 210 21 22 30 17 17 49 40 40 CLOR 0.9 2.5 <lor 38<="" <-0.5="" td=""><td>33 110 100 1200 7 19 19 0.7 2.8 5.5 4.7 2.9 14 12 2 1.7 3.0 12 3.0 11 3.0 11.5 37 100 6.2 11.5 37 1100 6.2 11.5 37 100 6.2 4.0 6.2 4.0 6.3 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6</td></lor>	33 110 100 1200 7 19 19 0.7 2.8 5.5 4.7 2.9 14 12 2 1.7 3.0 12 3.0 11 3.0 11.5 37 100 6.2 11.5 37 1100 6.2 11.5 37 100 6.2 4.0 6.2 4.0 6.3 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 19/12/2013 17/04/2014 18/03/2014	SE105949 SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107540 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE109814 R0 CE109840 R0 CE10840 R0 CE108420 R0 CE108447 R0 CE109847 R0 CE108447 R0 CE109847 R0 CE108986 R0 CE102844 CE105952 CE107544 R0 CE108947 R0 CE108844	0.6 74 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 82 89 9.7 17 9.5 35 20 28 4LOR 22 7,7 4LOR	70 190 440 5.8 4.6 0.8 8.1 6.9 8.1 7.3 1180 13 8.1 177 32 22 33 30 19 210 211 23 177 12 30 40,00	33 110 1100 1200 7 19 19 07 2.8 5.5 5.5 4.7 2.9 14 12 2 11,7 9.3 12 3.6 1.5 37 100 6.2 11 18 8.4 8.3 16 23 4_COR 4_COR 4_COR 4_COR
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW19CP MW19CP MW19CP MW19CP MW19CP MW20CP Trench Pump	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/01/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2014 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107540 R0 CE10840 R0 CE10840 R0 CE108914 R0 CE109816 R0 CE108914 R0 CE108916 R0 CE108916 R0 CE108916 R0 CE108917 R0 CE108917 R0 CE108918 R0 CE108918 R0 CE108918 R0 CE108918 R0 CE108918 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE10841 R0 CE10841 R0 CE10841 R0 CE108447 R0 CE108447 R0 CE108918 R0 CE109447 R0 CE109396 R0 CE1094844 CE107544 R0 CE105844 CE107544 R0 SE85518	0.6 74 230 1.4 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 82 89 9.7 17 17 9.5 20 28 4.OR 27 7.7 4.OR 4.OR 4.OR 4.OR 4.OR 4.OR 4.OR 4.OR	70 190 440 5.8 4.6 0.8 8.1 7.3 1180 13 8.1 177 32 23 30 19 210 21 23 30 19 210 21 23 30 49 <_COR 0.9 2.5 <_COR <0.5 38	33 110 1100 1200 7 19 19 0.7 2.8 5.5 5.5 4.7 2.9 14 12 2 1.7 9.3 112 3.6 1.5 37 1100 6.2 11 18 8.4 8.3 16 23 4.COR
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/04/2014 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013 18/02/2013	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107541 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE108936 R0 CE108936 R0 CE108936 R0 CE108947 R0 CE109847 R0 CE109847 R0 CE107801 R0 CE10840 R0 CE107801 R0 CE10840 R0 CE10852 CE107544 R0 CE108914 R0 CE108914 R0 CE10936 R0 CE10844 CCE105952 CE107544 R0 CE10936 R0 CE10940 R0 CE109540 R0 CE10	0.6 74 230 1.4 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 8.2 89 9.7 117 9.5 32 20 22 40 7.7 4LOR 40.5 21 52 21	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 6.9 8.1 17.3 180 113 8.1 177 32 23 30 19 210 21 223 30 177 12 23 30 49 40 40 40 40 40 40 40 40 40 40 40 40 40	33 110 110 1100 1200 7 119 0.7 1.9 0.7 2.8 5.5 4.7 2.9 1.4 12 2.1 1.7 9.3 1.2 3.6 1.5 37 100 6.2 11.5 37 1100 6.2 1.1 8.4 8.3 16 23 4.1 COR 4.0.5 4.0.6 4.0.6 4.0.7 4.0.5 4.0.7 4.2 34 34 8600 5500 220
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW	09/07/12 19/12/2013 12/12/12 18/02/13 19/12/2013 17/04/2014 18/02/2013 19/12/2013 19/12/2013 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE102840 CE107841 R0 CE10840 R0 CE108936 R0 CE108940 R0 CE108940 R0 CE108940 R0 CE108941 R0 CE108941 R0 CE108941 R0 CE108947 R0 CE108947 R0 CE108840 R0 CE108944 R0 CE108952 CE107544 R0 CE108944 R0 CE108944 R0 CE108944 R0 CE108944 R0 CE108944 R0 CE109844 CE107544 R0 CE109844 CE107544 R0 CE109844 CE107544 R0 CE102844 CE107545 R0 CE102844 CE107545 R0 CE102844 CE107545 R0 CE102844 CE107545 R0 CE102846 CE107546 R0 CE102847 CE102847 CE102847 CE102848	0.6 74 230 1.4 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 8.2 89 9.7 117 9.5 35 20 20 28 4-LOR 2 7.7 4-LOR 2 7.7 4-LOR 2 10.5 21 52 1100 410 410 410 410 410 410 410 410 41	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 6.9 8.1 17.3 180 13 8.1 17.3 22 33 30 19 210 21 23 30 17 17 22 30 09 210 21 23 30 17 12 30 40 40 40 40 70 70 770 740	33 110 110 100 1200 7 1-9 1-9 0.7 2-8 5-5 4.7 2-9 14 12 2-1 17 3.6 12 3.6 12 3.7 100 6-2 11 8.4 8.3 16 23 4.OR 4.OR 4.OR 4.OR 4.OR 4.OR 5500 5500 5500 14000
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 12/12/12 18/02/13 19/12/2013 17/04/2014 18/03/2014	SE105949 SE105949 SE100987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107541 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE109814 R0 CE109816 R0 CE108420 R0 CE108420 R0 CE107544 R0 CE108420 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108914 R0 CE108944 R0 CE109447 R0 CE108914 R0 CE109844 CE105562 CE107544 R0 CE108844 CE105562 CE107544 R0 CE109844 CE105562 CE107544 R0 CE109844 CE105564 CE105844 CE10564 R0 CE109845 CE105844 CE10564 R0 CE105846 CE1058486 CC0008844 CE107544 R0 CE105847 CE1058486 CC00088486 CC00088486 CE1058486 CC00088486 CC00088486 CE1058486 COuld not be sampled SE88456 Could not be sampled	0.6 74 230 1.4 230 1.4 3.1 <0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 82 89 9.7 17 17 9.5 35 20 28 4LOR 22 7,7 4LOR 40.5 21 52 22 22 22 22 22 22 22 22 22 22 22 22	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 7.3 180 13 8.1 177 3 22 23 30 19 210 211 23 30 19 210 21 23 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	33 110 1100 1200 7 19 19 07 2.8 5.5 5.5 4.7 2.9 14 12 2 1.7 9.3 112 3.6 1.5 37 100 6.2 11 18 8.4 8.3 16 23 4.OR 4.OR 4.OR 4.OR 4.O.S 4.OS 4.2 34 8800 65500 5500 5500 14000
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW19CP MW19CP MW19CP MW19CP MW19CP MW19CP MW20CP Trench Pump	0907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 11/12/12 18/02/13 19/12/2013 17/04/2014 18/02/2014 18/02/2014 18/02/2014 18/02/13 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 19/12/2013 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 18/02/2014 18/02/2013	SE105949 SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102840 CE102840 CE107841 R0 CE10840 R0 CE108914 R0 CE108914 R0 CE109896 R0 CE108914 R0 CE108914 R0 CE109814 R0 CE109847 R0 CE109847 R0 CE109814 R0 CE109816 R0 CE102844 CE107841 R0 CE108420 R0 CE108420 R0 CE108420 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108447 R0 CE108914 R0 CE10936 R0 CE108444 CE107544 R0 CE10936 R0 CE108444 CE107544 R0 CE105852 CE107544 R0 CE105852 CE107544 R0 CE105844 CE107544 R0 CE105852 CE107544 R0 CE105852 CE107544 R0 CE105844 CE107544 R0 CE105852 CE107544 R0 CE105844 CE107544 R0 CE105845 CE105844 CE107544 R0 SE88597 SE87927 SE88590 SE88690 SE88690 SE88133 SE101504	0.6 74 230 1.4 230 1.4 3.1 -0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 8.2 89 9.7 17 9.5 35 20 28 4CLOR	70 190 440 440 5.8 4.6 0.8 4.6 8.1 6.9 8.1 7.3 180 113 8.1 17 32 23 30 19 21 21 22 30 30 19 21 21 21 21 21 21 21 30 49 40 40 40 40 40 40 40 40 40 40 40 40 40	33 110 110 1100 1200 7 119 0.7 119 0.7 2.8 5.5 4.7 2.9 114 12 2 1.7 9.3 115 3.6 1.5 3.7 100 6.2 11 11 8.4 8.3 16 23 4.1 16 23 4.1 16 23 4.1 23 4.1 8.3 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.5 8.4 8.3 8.5 8.4 8.3 8.5 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.6 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW	0.907/12 19/12/2013 12/12/12 18/02/13 19/12/2013 12/12/12 18/02/13 19/12/2013 17/04/2014 18/03/2014	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102084 CE107544 R0 CE107541 R0 CE102840 CE107841 R0 CE10840 R0 CE10840 R0 CE10840 R0 CE108936 R0 CE108936 R0 CE108936 R0 CE108947 R0 CE108936 R0 CE108947 R0 CE107801 R0 CE108947 R0 CE107801 R0 CE108947 R0 CE108948 R0 CE108948 R0 CE105844 R0 CE1058952 CE107544 R0 CE108914 R0 CE108914 R0 CE108914 R0 CE108914 R0 CE108914 R0 CE108914 R0 CE108944 R0 CE108944 R0 CE109447 R0 CE108948 R0 CE108952 CE107544 R0 CE108944 CCE107544 R0 CE108958 CE107544 R0 CE108944 CE107544 R0 CE108844 CE107544 R0 CE108844 CE107544 R0 CE108845 SE88591 SE88456 Could not be sampled SE88590 SE89143 SE88590 SE89143 SE105044 SE102544 SE102544 SE102588	0.6 74 230 1.4 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 15 27 8.2 89 9.7 17 9.5 22 23 46 15 27 8.2 89 9.7 17 9.5 20 22 28 40.0 20 28 40.0 20 20 21 52 21 52 21 52 21 52 11000 410 960 1100	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 6.9 8.1 17 33 8.1 17 32 23 30 19 210 21 23 30 17 12 23 30 49 40 40 40 40 40 40 40 40 40 40 40 40 40	33 110 110 1100 1200 7 119 0.7 1.9 2.8 5.5 4.7 2.9 14 12 2.1 1.7 9.3 112 3.6 1.5 37 100 6.2 11.5 37 100 6.2 11.6 8.4 8.3 16 23 4.4 8.3 16 23 4.0 8.3 16 23 4.0 8.3 16 23 4.0 8.3 16 23 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW19CP MW	0907/12 19/12/2013 12/12/12 18/02/13 12/12/12 18/02/13 19/12/2013 17/04/2014 18/02/2013 18/02/2014 18/02/2013 18/02/2013 18/02/2013 18/02/2014 18/02/2014 18/02/2014 18/02/2013 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2014 18/02/2013 18/02/2011 1/02/2011 1/02/2011 1/02/2011 1/02/2011 1/02/2011 1/02/2011 1/02/2011 1/02/2011	SE105949 SE105949 SE109807-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE107841 R0 CE102840 CE107841 R0 CE10840 R0 CE10841 R0 CE108447 R0 CE109836 R0 CE102844 CE105952 CE107841 R0 CE108947 R0 CE108948 R0 CE102844 CE105952 CE107544 R0 CE108948 R0 CE102844 CE105952 CE107544 R0 CE108947 R0 CE108947 R0 CE108947 R0 CE108948 R0 CE108948 R0 CE102844 CE107544 R0 CE109874 R0 CE109884 CE107544 R0 CE102844 CE107544 R0 CE102844 CE107545 R0 CE102845 CE107545 R0 CE102845 CE107545 R0 CE102845 SE88518 SE8456 Could not be sampled SE88518 SE88456 Could not be sampled SE885890 SE889890 SE898890 SE89888 SE103639 SE103639	0.6 74 230 1.4 230 1.4 3.1 <-0.5 2.6 7.3 3.1 6.1 3.8 320 9.7 5.4 23 46 115 27 8.2 89 9.7 117 9.5 20 22 7.7 4.OR 20 25 21 55 21 100 410 410 410 410 410 410 410 410 900 150 900 150 260 100 32	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 6.9 8.1 17 33 8.1 17 32 23 30 19 210 21 23 30 17 12 30 49 4LOR 0.9 2.5 4LOR 0.9 2.5 4LOR 770 770 770 770 740 1100 770 140 190 140 1110 270 286 370 1110 270	33 110 1100 1200 77 19 0.7 19 0.7 2.8 5.5 4.7 2.9 14 12 2 1.7 3.6 1.5 37 1100 6.2 1.5 37 1100 6.2 1.5 37 100 6.2 1.5 37 100 6.2 1.1 18.4 8.3 16 23 4.COR 4.C
MW13CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW15CP MW16CP MW17CP MW	0.907/12 19/12/2013 12/12/12 18/02/13 12/12/12 18/02/13 19/12/2013 17/01/2014 18/03/2014	SE105949 SE105949 SE109987-1 CE107544 R0 CE102092 CE102844 CE107544 R0 CE102844 CE107544 R0 CE108814 R0 CE108814 R0 CE108814 R0 CE109816 R0 CE108814 R0 CE109816 R0 CE108814 R0 CE109816 R0 CE109816 R0 CE109816 R0 CE109816 R0 CE109816 R0 CE109816 R0 CE109817 R0 CE109817 R0 CE109818 R0 CE109818 R0 CE109847 R0 CE109847 R0 CE109847 R0 CE10840 R0 CE108814 R0 CE109847 R0 CE108814 R0 CE108814 R0 CE109847 R0 CE109847 R0 CE109814 R0 CE109844 CE105852 CE107544 R0 CE109846 CE109846 CE105848 CE105848 SE8818 SE88486 Could not be sampled SE88297 SE88890 SE889143 SE101504 SE102988 SE103639 SE104688	0.6 74 230 1.4 3.1	70 190 440 5.8 4.6 0.8 4.6 0.8 8.1 6.9 8.1 7.3 180 13 8.1 17 32 22 33 30 19 210 211 23 17 112 30 49 <	33 110 1100 1200 7 19 19 0.7 19 19 0.7 2.8 5.5 5.5 4.7 2.9 14 12 2 1.7 9.3 112 3.6 1.5 37 100 6.2 11 18 8.4 8.3 16 23 4_COR 4_

22-095

			cis-1,2-Dichloroethene	Trichloroethene (TCE)	Tetrachloroethene (PCE)
			ua/m³	ua/m³	ua/m ³
eld_ID	SDG	Sampled_Date			
	1112524	20/12/11	ND	3700	170000
SVW01	1202418	15/02/12	1400	7800	84000
500001	1207359	13/07/12	7800	21000	86000
	1208098	30/07/12	3800	12000	53000
	1112524	20/12/11	1200	1800	80000
1202418	1202418	15/02/12	-	. (-)	_
SVW02	1207359	13/07/12	953	5800	21000
	1208098	30/07/12	630	7600	27000
	1112524	20/12/11	810	1000	65000
0) // // // 00	1202418	15/02/12	360	1400	91000
SVW03	1207359	13/07/12	2500	15000	140000
	1208098	30/07/12	810	7900	120000
	1112524	20/12/11	<150	230	24000
G) (14/G)	1202418	15/02/12	ND ND	1200	23000
SVW04	1207359	13/07/12	120	920	9400
	1208098	30/07/12	140	1600	12000
0) 04/05	1207359	13/07/12	ND	90	5800
SVW05	1208098	30/07/12	ND	68	5400
	1207359	13/07/12	200	3000	26000
SVW06	1208098	30/07/12	84	2300	32000
S. 44.45	1207359	13/07/12	ND ND	11	450
SVW07	1208098	30/07/12	ND.	14	530
SVW08	1210378	12/10/12	ND	8.4	160
SVW09	1210378	12/10/12	ND	ND ND	21
SVW10	1210378	12/10/12	2900	14000	6900
SVW11	1212384	26/10/12		8400	34000
SVW12	1210378	12/10/12	ND	16	ND
SVW13	1212384	14/12/12	930	8100	15000
SVW14	1212384	14/12/12	700	14000	17000
SVW15	1212384	14/12/12	160	4000	12000
33	1303260	11/03/13	ND	100	1300
SVW16	1311157	07/11/13	48	760	220
	1405350	12/05/14	ND	ND	ND
	1303260	11/03/13	ND ND	84	1300
SVW17	1311157	07/11/13	ND ND	240	1800
2	1405350	12/05/14	ND ND	24	430
SVW18	1303260	11/03/13	ND ND	72	160

Comments

ND denotes Non Detect

SUMMARY OF ALL ANALYTICAL RESULTS - SOIL VAPOUR

APPENDIX F

pour Sam **Laboratory Certificates – Soil Vapour Samples May 2014**

5/22/2014

sch4p4(6) Personal informatior

Eurofins | mgt (formerly mgt Labmark Environmental Laboratoric Unit 1, 21 Smallwood Place Murarrie Queensland 4162

Project Name: Kwikleen Project #: 087673045 Workorder #: 1405350A

Dear sch4p4(6) Personal infor

The following report includes the data for the above referenced project for sample(s) received on 5/19/2014 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: sch4p4(6) Personal information if you have any questions regarding the data in this report.

Regards,

sch4p4(6) Personal information

sch4p4(6) Personal infor

Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-985-1020 www.airtoxics.com

WORK ORDER #: 1405350A

Work Order Summary

sch4p4(6) Personal infor **CLIENT:** BILL TO: Accounts Payable

> Eurofins | mgt (formerly mgt Labmark Eurofins | mgt (formerly mgt Labmark

Environmental Laboratories) Environmental Laboratories) Unit 1, 21 Smallwood Place 2-5 Kingston Town Close Oakleigh, Vic 3166

Murarrie

Queensland 4162 +61 7 3902 4606 B14 083 418218 PHONE: **P.O.** #

FAX: PROJECT # 087673045 Kwikleen

DATE RECEIVED: 05/19/2014 sch4p4(6) Personal CONTACT: DATE COMPLETED: 05/22/2014

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVW16 (My11558)	TO-15	4.1 "Hg	15.2 psi
02A	SVW17 (My11559)	TO-15	7.6 "Hg	15 psi
03A	FB01 (My11560)	TO-15	11.6 "Hg	14.9 psi
04A	DUP01 (My11561)	TO-15	8.6 "Hg	15.3 psi
05A	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA
	olished on	2est Ro		

sch4p4(6) Personal information DATE: 05/22/14 **CERTIFIED BY:**

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 2 of 21

LABORATORY NARRATIVE EPA Method TO-15 Eurofins | mgt (formerly mgt Labmark Environmental Laboratories) Workorder# 1405350A

Four 1 Liter Summa Canister (100% Certified) samples were received on May 19, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A signature and date was not provided by the field sampler.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVW16 (My11558)

Lab ID#: 1405350A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.7	5.7	8.9	11
Toluene	1.2	2.3	4.4	8.6
m,p-Xylene	1.2	3.4	5.1	15
o-Xylene	1.2	1.4	5.1	6.2
4-Ethyltoluene	1.2	1.7	5.8	8.2
1,2,4-Trimethylbenzene	1.2	2.5	5.8	12

Client Sample ID: SVW17 (My11559)

Lab ID#: 1405350A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.4	15	10	28
Acetone	14	25	32	60
Hexane	1.4	1.9	4.8	6.7
Benzene	1.4	1.5	4.3	4.8
Heptane	1.4	2.0	5.5	8.1
Trichloroethene	1.4	4.6	7.2	24
Toluene	1.4	5.0	5.1	19
Tetrachloroethene	1.4	63	9.2	430
m,p-Xylene	1.4	3.7	5.9	16
o-Xylene	1.4	1.5	5.9	6.4
4-Ethyltoluene	1.4	1.3 J	6.6	6.6 J
1,2,4-Trimethylbenzene	1.4	1.4	6.6	7.1

Client Sample ID: FB01 (My11560)

Lab ID#: 1405350A-03A
No Detections Were Found.

Client Sample ID: DUP01 (My11561)

Lab ID#: 1405350A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: DUP01 (My11561)

Lab ID#: 1405350A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.7	6.2	11	12
		000		
	Resolutions			
6001	2			
alblishe				

Client Sample ID: SVW16 (My11558) Lab ID#: 1405350A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3052124 2.36	Date of Collection: 5/12/14 12:45:00 PM Date of Analysis: 5/21/14 11:02 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	5.8	Not Detected
Freon 114	1.2	Not Detected	8.2	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	46	Not Detected
Chloroethane	4.7	Not Detected	12	Not Detected
Freon 11	1.2	Not Detected	6.6	Not Detected
Ethanol	4.7	5.7	8.9	11
Freon 113	1.2	Not Detected	9.0	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Acetone	12	Not Detected	28	Not Detected
2-Propanol	4.7	Not Detected	12	Not Detected
Carbon Disulfide	4.7	Not Detected	15	Not Detected
3-Chloropropene	4.7	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	41	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Hexane	1.2	Not Detected	4.2	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.7	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.5	Not Detected
Chloroform	1.2	Not Detected	5.8	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Cyclohexane	1.2	Not Detected	4.1	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.4	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.5	Not Detected
Benzene	1.2	Not Detected	3.8	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.8	Not Detected
Heptane	1.2	Not Detected	4.8	Not Detected
Trichloroethene	1.2	Not Detected	6.3	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.7	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.9	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.8	Not Detected
Toluene	1.2	2.3	4.4	8.6
trans-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Tetrachloroethene	1.2	Not Detected	8.0	Not Detected
2-Hexanone	4.7	Not Detected	19	Not Detected

Client Sample ID: SVW16 (My11558) Lab ID#: 1405350A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

	Bute of Analysis: 6/21/14 11:02 1 iii
Dil. Factor: 2.36	Date of Analysis: 5/21/14 11:02 PM
File Name: 3052124	Date of Collection: 5/12/14 12:45:00 PM

	= ** *	= *****		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.1	Not Detected
Chlorobenzene	1.2	Not Detected	5.4	Not Detected
Ethyl Benzene	1.2	Not Detected	5.1	Not Detected
m,p-Xylene	1.2	3.4	5.1	15
o-Xylene	1.2	1.4	5.1	6.2
Styrene	1.2	Not Detected	5.0	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.8	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.1	Not Detected
Propylbenzene	1.2	Not Detected	5.8	Not Detected
4-Ethyltoluene	1.2	1.7	5.8	8.2
1,3,5-Trimethylbenzene	1.2	Not Detected	5.8	Not Detected
1,2,4-Trimethylbenzene	1.2	2.5	5.8	12
1,3-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.1	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
1,2,4-Trichlorobenzene	4.7	Not Detected	35	Not Detected
Hexachlorobutadiene	4.7	Not Detected	50	Not Detected
Naphthalene	4.7	Not Detected	25	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

:.6	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SVW17 (My11559) Lab ID#: 1405350A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	2002.20			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	6.7	Not Detected
Freon 114	1.4	Not Detected	9.4	Not Detected
Chloromethane	14	Not Detected	28	Not Detected
Vinyl Chloride	1.4	Not Detected	3.4	Not Detected
1,3-Butadiene	1.4	Not Detected	3.0	Not Detected
Bromomethane	14	Not Detected	52	Not Detected
Chloroethane	5.4	Not Detected	14	Not Detected
Freon 11	1.4	Not Detected	7.6	Not Detected
Ethanol	5.4	15	10	28
Freon 113	1.4	Not Detected	10	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.4	Not Detected
Acetone	14	25	32	60
2-Propanol	5.4	Not Detected	13	Not Detected
Carbon Disulfide	5.4	Not Detected	17	Not Detected
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	14	Not Detected	47	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	4.9	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.4	Not Detected
Hexane	1.4	1.9	4.8	6.7
1,1-Dichloroethane	1.4	Not Detected	5.5	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.4	Not Detected	16	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.4	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.0	Not Detected
Chloroform	1.4	Not Detected	6.6	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.4	Not Detected
Cyclohexane	1.4	Not Detected	4.6	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.5	Not Detected
2,2,4-Trimethylpentane	1.4	Not Detected	6.3	Not Detected
Benzene	1.4	1.5	4.3	4.8
1,2-Dichloroethane	1.4	Not Detected	5.5	Not Detected
	1.4	2.0	5.5	8.1
Heptane Trichloroethene	1.4	4.6	7.2	24
1,2-Dichloropropane	1.4	Not Detected	6.2	Not Detected
	5.4	Not Detected	19	Not Detected
1,4-Dioxane	1.4	Not Detected	9.0	Not Detected
Bromodichloromethane				
cis-1,3-Dichloropropene	1.4	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.5	Not Detected
Toluene	1.4	5.0	5.1	19
trans-1,3-Dichloropropene	1.4	Not Detected	6.1	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.4	Not Detected
Tetrachloroethene	1.4	63	9.2	430
2-Hexanone	5.4	Not Detected	22	Not Detected

Client Sample ID: SVW17 (My11559) Lab ID#: 1405350A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

B" II "	4.4	Net Detected	10	Nat Data da d
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
	Rpt. Limit	Amount	Rpt. Limit	Amount
Dil. Factor:	2.70	Date of Analysis: 5/21/14 11:28 PM		
File Name:	3052125	Date of Collection: 5/12/14 1:30:00 PM		

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	10	Not Detected
Chlorobenzene	1.4	Not Detected	6.2	Not Detected
Ethyl Benzene	1.4	Not Detected	5.9	Not Detected
m,p-Xylene	1.4	3.7	5.9	16
o-Xylene	1.4	1.5	5.9	6.4
Styrene	1.4	Not Detected	5.8	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	Not Detected	6.6	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.3	Not Detected
Propylbenzene	1.4	Not Detected	6.6	Not Detected
4-Ethyltoluene	1.4	1.3 J	6.6	6.6 J
1,3,5-Trimethylbenzene	1.4	Not Detected	6.6	Not Detected
1,2,4-Trimethylbenzene	1.4	1.4	6.6	7.1
1,3-Dichlorobenzene	1.4	Not Detected	8.1	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.1	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.0	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.1	Not Detected
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected
Hexachlorobutadiene	5.4	Not Detected	58	Not Detected
Naphthalene	5.4	Not Detected	28	Not Detected

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: FB01 (My11560) Lab ID#: 1405350A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3052126 3.28		of Collection: 5/12/ of Analysis: 5/21/14	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.6	Not Detected	8.1	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	34	Not Detected
Vinyl Chloride	1.6	Not Detected	4.2	Not Detected
1,3-Butadiene	1.6	Not Detected	3.6	Not Detected
Bromomethane	16	Not Detected	64	Not Detected
Chloroethane	6.6	Not Detected	17	Not Detected
Freon 11	1.6	Not Detected	9.2	Not Detected
Ethanol	6.6	Not Detected	12	Not Detected
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.5	Not Detected
Acetone	16	Not Detected	39	Not Detected
2-Propanol	6.6	Not Detected	16	Not Detected
Carbon Disulfide	6.6	Not Detected	20	Not Detected
3-Chloropropene	6.6	Not Detected	20	Not Detected
Methylene Chloride	16	Not Detected	57	Not Detected
Methyl tert-butyl ether	1.6	Not Detected	5.9	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.5	Not Detected
Hexane	1.6	Not Detected	5.8	Not Detected
1,1-Dichloroethane	1.6	Not Detected	6.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.6	Not Detected	19	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.5	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.8	Not Detected
Chloroform	1.6	Not Detected	8.0	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.9	Not Detected
Cyclohexane	1.6	Not Detected	5.6	Not Detected
Carbon Tetrachloride	1.6	Not Detected	10	Not Detected
2,2,4-Trimethylpentane	1.6	Not Detected	7.7	Not Detected
Benzene	1.6	Not Detected	5.2	Not Detected
1,2-Dichloroethane	1.6	Not Detected	6.6	Not Detected
Heptane	1.6	Not Detected	6.7	Not Detected
Trichloroethene	1.6	Not Detected	8.8	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.6	Not Detected
1,4-Dioxane	6.6	Not Detected	24	Not Detected
Bromodichloromethane	1.6	Not Detected	11	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.4	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.7	Not Detected
Toluene	1.6	Not Detected	6.2	Not Detected
trans-1,3-Dichloropropene	1.6	Not Detected	7.4 8.0	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.9	Not Detected
Tetrachloroethene	1.6	Not Detected	11	Not Detected
2-Hexanone	6.6	Not Detected	27	Not Detected

Client Sample ID: FB01 (My11560) Lab ID#: 1405350A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3052126	Date of Collection: 5/12/14 1:40:00 PM
Dil. Factor:	3.28	Date of Analysis: 5/21/14 11:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	14	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	13	Not Detected
Chlorobenzene	1.6	Not Detected	7.6	Not Detected
Ethyl Benzene	1.6	Not Detected	7.1	Not Detected
m,p-Xylene	1.6	Not Detected	7.1	Not Detected
o-Xylene	1.6	Not Detected	7.1	Not Detected
Styrene	1.6	Not Detected	7.0	Not Detected
Bromoform	1.6	Not Detected	17	Not Detected
Cumene	1.6	Not Detected	8.1	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	Not Detected	8.1	Not Detected
4-Ethyltoluene	1.6	Not Detected	8.1	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	8.1	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	8.1	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.9	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.9	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.5	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.9	Not Detected
1,2,4-Trichlorobenzene	6.6	Not Detected	49	Not Detected
Hexachlorobutadiene	6.6	Not Detected	70	Not Detected
Naphthalene	6.6	Not Detected	34	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

::5	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: DUP01 (My11561) Lab ID#: 1405350A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3052127 2.86	Date of Collection: 5/12/14 1:50:00 PM Date of Analysis: 5/22/14 12:20 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	7.1	Not Detected
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.7	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.0	Not Detected
Ethanol	5.7	6.2	11	12
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	Not Detected	34	Not Detected
2-Propanol	5.7	Not Detected	14	Not Detected
Carbon Disulfide	5.7	Not Detected	18	Not Detected
3-Chloropropene	5.7	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5.0	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.7	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Cyclohexane	1.4	Not Detected	4.9	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.0	Not Detected
2,2,4-Trimethylpentane	1.4	Not Detected	6.7	Not Detected
Benzene	1.4	Not Detected	4.6	Not Detected
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	Not Detected	7.7	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.6	Not Detected
1,4-Dioxane	5.7	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.6	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.8	Not Detected
Toluene	1.4	Not Detected	5.4	Not Detected
trans-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Tetrachloroethene				Not Detected
	1.4 5.7	Not Detected	9.7	
2-Hexanone	5.7	Not Detected	23	Not Detected

Client Sample ID: DUP01 (My11561) Lab ID#: 1405350A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3052127	Date of Collection: 5/12/14 1:50:00 P	
Dil. Factor:	2.86	Date of Analysis: 5/22/14 12:20 AM	
	Rpt. Limit	Amount Rpt. Limit Amount	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.6	Not Detected
Ethyl Benzene	1.4	Not Detected	6.2	Not Detected
m,p-Xylene	1.4	Not Detected	6.2	Not Detected
o-Xylene	1.4	Not Detected	6.2	Not Detected
Styrene	1.4	Not Detected	6.1	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.0	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.8	Not Detected
Propylbenzene	1.4	Not Detected	7.0	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.0	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.0	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.0	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.4	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,2,4-Trichlorobenzene	5.7	Not Detected	42	Not Detected
Hexachlorobutadiene	5.7	Not Detected	61	Not Detected
Naphthalene	5.7	Not Detected	30	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

::6	()	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: Lab Blank Lab ID#: 1405350A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3052107 1.00		of Collection: NA of Analysis: 5/21/1	14 02:01 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Z I ICAGITOTIC	2.0	1401 Doleolea	0.2	NOT Defected

Client Sample ID: Lab Blank Lab ID#: 1405350A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3052107 1.00	Date of Collection: NA Date of Analysis: 5/21/14 02:01 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

Container Type: NA - Not Applicable

: S		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: CCV Lab ID#: 1405350A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3052105 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/21/14 12:23 PM

Compound	%Recovery
Freon 12	100
Freon 114	100
Chloromethane	98
Vinyl Chloride	101
1,3-Butadiene	98
Bromomethane	102
Chloroethane	98
Freon 11	99
Ethanol	107
Freon 113	99
1,1-Dichloroethene	102
Acetone	95
2-Propanol	98
Carbon Disulfide	98
3-Chloropropene	98
Methylene Chloride	99
Methyl tert-butyl ether	99
trans-1,2-Dichloroethene	98
Hexane	96
1,1-Dichloroethane	99
2-Butanone (Methyl Ethyl Ketone)	95
cis-1,2-Dichloroethene	100
Tetrahydrofuran	95
Chloroform	101
1,1,1-Trichloroethane	98
Cyclohexane	100
Carbon Tetrachloride	98
2,2,4-Trimethylpentane	99
Benzene	96
1,2-Dichloroethane	99
Heptane	96
Trichloroethene	117
1,2-Dichloropropane	98
1,4-Dioxane	92
Bromodichloromethane	99
cis-1,3-Dichloropropene	100
4-Methyl-2-pentanone	90
Toluene	97
trans-1,3-Dichloropropene	98
1,1,2-Trichloroethane	95
Tetrachloroethene	95
2-Hexanone	90

Client Sample ID: CCV Lab ID#: 1405350A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3052105 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/21/14 12:23 PM

Compound	%Recovery
Dibromochloromethane	97
1,2-Dibromoethane (EDB)	98
Chlorobenzene	97
Ethyl Benzene	98
m,p-Xylene	98
o-Xylene	96
Styrene	99
Bromoform	99
Cumene	96
1,1,2,2-Tetrachloroethane	75
Propylbenzene	96
4-Ethyltoluene	97
1,3,5-Trimethylbenzene	95
1,2,4-Trimethylbenzene	96
1,3-Dichlorobenzene	97
1,4-Dichlorobenzene	95
alpha-Chlorotoluene	98
1,2-Dichlorobenzene	94
1,2,4-Trichlorobenzene	74
Hexachlorobutadiene	73
Naphthalene	93

Container Type: NA - Not Applicable

3.6		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	98	70-130

File Name:

Dil. Factor:

2,2,4-Trimethylpentane

Bromodichloromethane

cis-1,3-Dichloropropene 4-Methyl-2-pentanone

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Tetrachloroethene

2-Hexanone

1,2-Dichloroethane

Trichloroethene
1,2-Dichloropropane

1.4-Dioxane

Toluene

Benzene

Heptane

Client Sample ID: LCS Lab ID#: 1405350A-07A

Date of Collection: NA

Date of Analysis: 5/21/14 11:13 AM

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

EPA METHOD TO-15 GC/MS FULL SCAN

3052103

1.00

Method Compound %Recovery Limits Freon 12 109 70-130 112 70-130 Freon 114 Chloromethane 106 70-130 109 70-130 Vinyl Chloride 107 70-130 1,3-Butadiene 70-130 Bromomethane 113 Chloroethane 110 70-130 110 Freon 11 70-130 Ethanol 115 70-130 124 70-130 Freon 113 125 70-130 1,1-Dichloroethene 106 70-130 Acetone 110 2-Propanol 70-130 Carbon Disulfide 100 70-130 3-Chloropropene 110 70-130 Methylene Chloride 118 70-130 Methyl tert-butyl ether 111 70-130 trans-1,2-Dichloroethene 95 70-130 109 70-130 Hexane 70-130 1,1-Dichloroethane 114 2-Butanone (Methyl Ethyl Ketone) 106 70-130 125 70-130 cis-1,2-Dichloroethene 107 70-130 Tetrahydrofuran Chloroform 113 70-130 1,1,1-Trichloroethane 112 70-130 Cyclohexane 113 70-130 Carbon Tetrachloride 112 70-130

111

109

113

112

108

108

108

115

116

109

108

104

106

106

111

Client Sample ID: LCS Lab ID#: 1405350A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3052103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/21/14 11:13 AM

		Method
Compound	%Recov	ery Limits
Dibromochloromethane	115	70-130
1,2-Dibromoethane (EDB)	110	70-130
Chlorobenzene	107	70-130
Ethyl Benzene	108	70-130
m,p-Xylene	110	70-130
o-Xylene	107	70-130
Styrene	113	70-130
Bromoform	117	70-130
Cumene	111	70-130
1,1,2,2-Tetrachloroethane	107	70-130
Propylbenzene	111	70-130
4-Ethyltoluene	111	70-130
1,3,5-Trimethylbenzene	108	70-130
1,2,4-Trimethylbenzene	109	70-130
1,3-Dichlorobenzene	109	70-130
1,4-Dichlorobenzene	107	70-130
alpha-Chlorotoluene	119	70-130
1,2-Dichlorobenzene	108	70-130
1,2,4-Trichlorobenzene	105	70-130
Hexachlorobutadiene	105	70-130
Naphthalene	89	60-140

Container Type: NA - Not Applicable

. 6	Method	
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCSD Lab ID#: 1405350A-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3052104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/21/14 11:37 AM

, 0				
Compound	%Recovery	Method Limits		
Freon 12	114	70-130		
Freon 114	118	70-130		
Chloromethane	111	70-130		
Vinyl Chloride	116	70-130		
1,3-Butadiene	113	70-130		
Bromomethane	120	70-130		
Chloroethane	116	70-130		
Freon 11	116	70-130		
Ethanol	122	70-130		
Freon 113	130	70-130		
1,1-Dichloroethene	133 Q	70-130		
Acetone	109	70-130		
2-Propanol	117	70-130		
Carbon Disulfide	104	70-130		
3-Chloropropene	114	70-130		
Methylene Chloride	124	70-130		
Methyl tert-butyl ether	117	70-130		
trans-1,2-Dichloroethene	100	70-130		
Hexane	115	70-130		
1,1-Dichloroethane	120	70-130		
2-Butanone (Methyl Ethyl Ketone)	115	70-130		
cis-1,2-Dichloroethene	134 Q	70-130		
Tetrahydrofuran	111	70-130		
Chloroform	120	70-130		
1,1,1-Trichloroethane	117	70-130		
Cyclohexane	118	70-130		
Carbon Tetrachloride	116	70-130		
2,2,4-Trimethylpentane	118	70-130		
Benzene	115	70-130		
1,2-Dichloroethane	117	70-130		
Heptane	117	70-130		
Trichloroethene	113	70-130		
1,2-Dichloropropane	114	70-130		
1,4-Dioxane	114	70-130		
Bromodichloromethane	121	70-130		
cis-1,3-Dichloropropene	122	70-130		
4-Methyl-2-pentanone	114	70-130		
Toluene	114	70-130		
trans-1,3-Dichloropropene	102	70-130		
1,1,2-Trichloroethane	104	70-130		
Tetrachloroethene	106	70-130		
2-Hexanone	112	70-130		

Client Sample ID: LCSD Lab ID#: 1405350A-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3052104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/21/14 11:37 AM

		Method
Compound	%Recov	rery Limits
Dibromochloromethane	113	70-130
1,2-Dibromoethane (EDB	108	70-130
Chlorobenzene	107	70-130
Ethyl Benzene	106	70-130
m,p-Xylene	109	70-130
o-Xylene	106	70-130
Styrene	112	70-130
Bromoform	116	70-130
Cumene	111	70-130
1,1,2,2-Tetrachloroethane	108	70-130
Propylbenzene	111	70-130
4-Ethyltoluene	112	70-130
1,3,5-Trimethylbenzene	108	70-130
1,2,4-Trimethylbenzene	109	70-130
1,3-Dichlorobenzene	110	70-130
1,4-Dichlorobenzene	108	70-130
alpha-Chlorotoluene	119	70-130
1,2-Dichlorobenzene	109	70-130
1,2,4-Trichlorobenzene	115	70-130
Hexachlorobutadiene	112	70-130
Naphthalene	100	60-140

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	98	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page _ / of /

	sch4p4(6) Pers	sonal information	handling, or shipping of	of sample	es. D.O.T	. Hotline (800) 46	7-4922	O			Га	ge)ı <u> </u>
Project Ma	sob4n	4(6) Personal information	sch4p4(6) Personal ii	nf¢		ct Info:	C			Around me:	Lab Use Press	Only urized by:	
	by: (Print and Sign)SCHAP GOLDER ASSO	CFATES Email sch4p4	4(6) Persona	er.Co		Q 000			☐ No		Date:		
Address_2	216 Draper St	_City Cairus	State QLD Zip 48	370		# 0876			☐ Ru	sh	Press	urization (Gas:
Phone	1417 122 820	7 Fax		De of	Projec	t Name Kwi	hleen		sp	ecify		N ₂ He	e
1-610	Field Comm	In I D. VI and the VI			ate	Time					Water to be with	sure/Vac	uum
Lab I.D.	Annual Control of the	le I.D. (Location)	Can #		llection	of Collection	Analyse	es Request	ted	Initial	Final	Receipt	Final (psi)
	SVW16	TITGAT (2)90	37394	12/5	114	12:45	TO15 :	+ Heliun	^	-30	-5		
	SVW 17	Tart, the sain	35546	12/	5/14	13:30	TO15 1	4 Helic	1m	-27	-7		
	FBOI	His 1951 ONE 191				13:40				-30	-13		
	DUPOL		30822	12/	5/14	13:50	TO15 +	Helia	и	-30	-10		
	A SHIP IN	alia y sala	20,200	1	Limet		12516						
	4	Toperma AA 9		200	Exalic	e Suz vlanci	10 TY						
			a later stars	18-14	Ser v	poieto en	Mayer						
		18181 B 1416		PACE.	B ,8	Britishno A	Filogy,						
		0,0					-500						
	7 1			3 97			1/5						
Fsch4p4(6)	,	e/Time /5//4 /7:00	Sch4p4(6) Persona		Date/Tim	30am.		otes:	418	1218			
Relinquish			Received by: (signat	ture) [Date/Tim	ie							
Relinquish	ned by: (signature) Date	e/Time	Received by: (signat	ture) [Date/Tim	e							
Lab	Shipper Name	Air Bill #	Te	emp (°	C)	Condition	C	ustody Sea	als Inta	ct?	Work (Order #	
Use Only			NO 81			- 3- 3	1	Yes No	Noi	ne			
95				File B							Page 3	365 of 406	
							THE WALL THE THE SAME		E MARKET TO THE PARTY OF THE PA		THE RESIDENCE OF THE PARTY OF T		

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: Golder Associates Pty Ltd (Qld)

Contact name: sch4p4(6) Personal info

Client job number: KWIKLEEN 087673045

COC number: Not provided

Turn around time: 5 Day

Date/Time received: May 13, 2014 8:30 AM

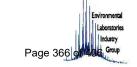
Eurofins | mgt reference: 418218

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- ✓ Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:


sch4p4(6) Personal i on Phone : (+61) 8 8947 1557 or by e.mail sch4p4(6) Personal eurofins.com.au

Results will be delivered electronically via e.mail to sch4p4(6) Personal in sch4p4(6) Per@golder.com.au.

Eurofins | mgt Sample Receipt

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

May 13, 2014 8:30 AM **Company Name:** Golder Associates Pty Ltd (Qld) Order No.: Received:

May 20, 2014 Address: 147 Coronation Dve Report #: 418218 Due: Milton

(07) 3721 5400 Phone: Priority: 5 Day (07) 3721 5401 **Contact Name:** Fax:

QLD 4064 sch4p4(6) Persona

TO15 (standard 62-compound list) (1L)

Eurofins | mgt Client Manager: sch4p4(6) Person

Sample Detail

KWIKLEEN 087673045

boratory where analysis is conducted elbourne Laboratory - NATA Site # 1254 & 14271

dney Laboratory - NATA Site # 18217

isbane Laboratory - NATA Site # 20794

tornal Laboratory

Client Job No.:

ternal Laboratory							
pt	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
Ε	/W16	May 12, 2014	12:45PM	Air	B14-My11558	Χ	
	/W17	May 12, 2014	12:45PM	Air	B14-My11559	Х	
	301	May 12, 2014	12:45PM	Air	B14-My11560	Х	
	JP01	May 12, 2014	12:45PM	Air	B14-My11561	Х	

Certificate of Analysis

Golder Associates Pty Ltd 147 Coronation Dve Milton QLD 4064

Attention:

sch4p4(6) Personal

Report

418218-A

Client Reference

KWIKLEEN 087673045

Received Date

May 13, 2014

Client Sample ID Sample Matrix			SVW16 Air	SVW17 Air	FB01 Air	DUP01 Air
Eurofins mgt Sample No.			B14-My11558	B14-My11559	B14-My11560	B14-My11561
Date Sampled			May 12, 2014	May 12, 2014	May 12, 2014	May 12, 2014
Test/Reference	LOR	Unit				
Soil Vapour (Summa Canister)						
TO15 (standard 62-compound list) (1L)			see attached	see attached	see attached	see attached

Eurofins | mgt Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

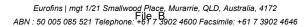
TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%


Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

OC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.
 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " " in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

sch4p4(6) Pers

Client Services

Glenn Jackson Laboratory Manager

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Published on Resources Disciosure Los **APPENDIX G**

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

Jurces Dischosure Lot

Golder Associates

Publishedon

File B Page 373 of 406

or Kesources Dischosure Loss Published on Refliact 2009 Published on Resources Dischosure Loss Published On Resources Dischosure Dischosure Loss Published Dischosure Dischosure

22-095 File B

REGISTRATION CONFIRMATION STATEMENT

DEPT OF NATURAL RESOURCES AND MINES, QUEENSLAND

Title Reference : 50977238

This is the current status of the title as at 11:02 on 21/01/2015

REGISTERED OWNER

Dealing No: 716200348 12/12/2014

NQ VILLAS PTY LIMITED A.C.N. 131 660 805 TRUSTEE UNDER INSTRUMENT 711779135

ESTATE AND LAND

Estate in Fee Simple

LOT 20 SURVEY PLAN 262379

County of NARES Parish of CAIRNS

Local Government: CAIRNS

EASEMENTS, ENCUMBRANCES AND INTERESTS

- Rights and interests reserved to the Crown by Deed of Grant No. 20106187 (ALLOT 4 SUBN SEC 145) Deed of Grant No. 20108157 (POR 337) Deed of Grant No. 20109043 (POR 335) Deed of Grant No. 20109133 (ALLOT 3 SUBN SEC 145)
- 2. EASEMENT IN GROSS No 601349664 (N598417) 19/02/1969 BURDENING THE LAND TO COUNCIL OF THE CITY OF CAIRNS OVER EASEMENT A ON RP722609 AND EASEMENTS B AND C ON RP722610
- 3. MORTGAGE No 711779171 08/07/2008 at 15:22 ST.GEORGE BANK LIMITED A.C.N. 055 513 070
- 4. EASEMENT No 716200333 12/12/2014 at 12:52 benefiting the land over EASEMENT F ON SP268791
- 5. EASEMENT No 716200334 12/12/2014 at 12:52 burdening the land to LOT 1 ON RP745758 OVER EASEMENT G ON SP268791
- 6. EASEMENT No 716266780 19/01/2015 at 13:36 benefiting the land over EASEMENT H ON SP262379
- 7. EASEMENT No 716266781 19/01/2015 at 13:36 benefiting the land over EASEMENT I ON SP262379

Page 1/2

REGISTRATION CONFIRMATION STATEMENT

DEPT OF NATURAL RESOURCES AND MINES, QUEENSLAND

Title Reference : 50977238

EASEMENTS, ENCUMBRANCES AND INTERESTS (Continued)

8. EASEMENT IN GROSS No 716266784 19/01/2015 at 13:37 burdening the land CAIRNS REGIONAL COUNCIL OWER EASEMENTS K AND L ON SP268792

ADMINISTRATIVE ADVICES - NIL UNREGISTERED DEALINGS - NIL

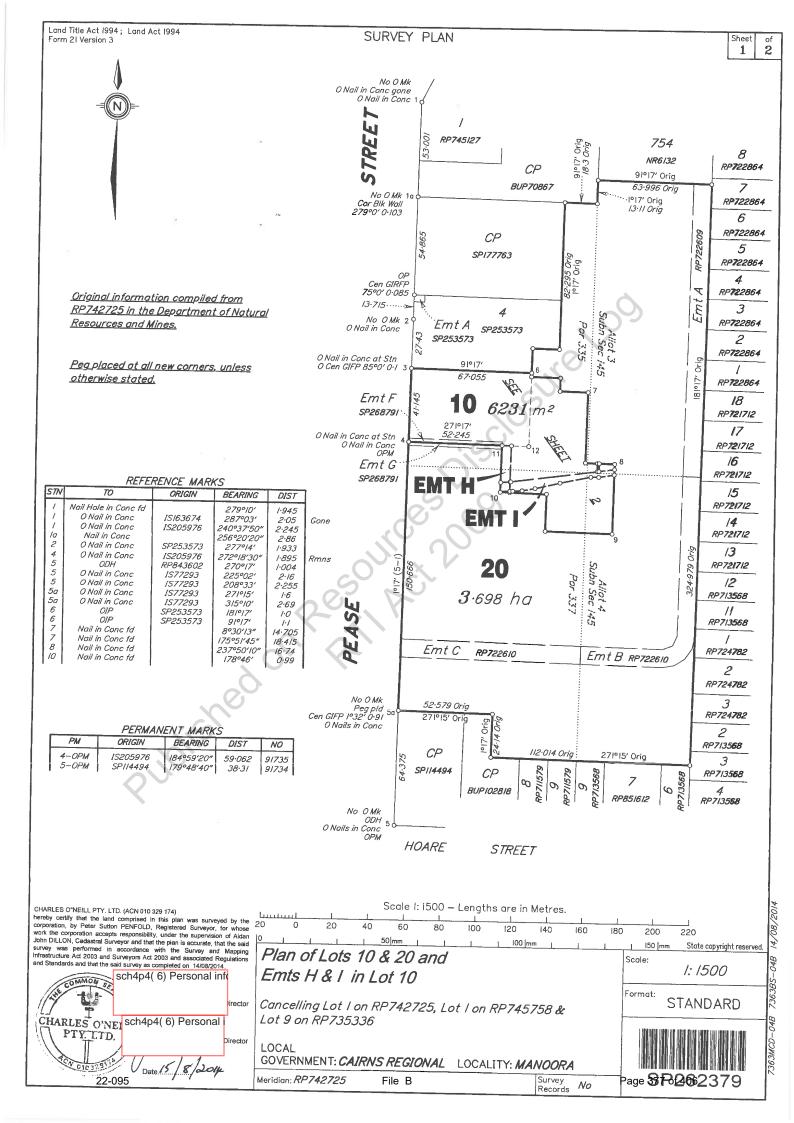
CERTIFICATE OF TITLE ISSUED - No

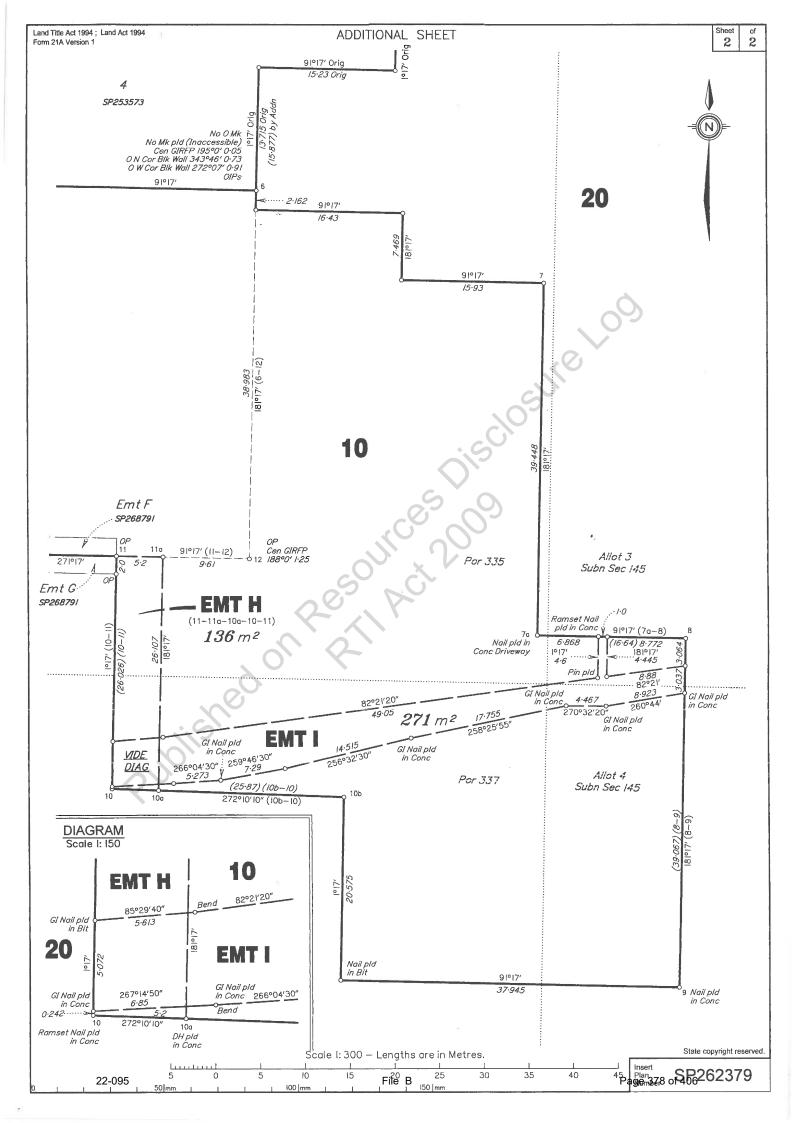
DEALINGS REGISTERED

716266780 EASEMENT 716266781 EASEMENT 716266782 SURVEY PLAN 716266784 EAS IN GROSS

Caution - Charges do not necessarily appear in order of priority

** End of Confirmation Statement **


..locatio. Registrar of Titles and Registrar of Water Allocations


Lodgement No: 3553240 Email: info@prestonlaw.com.au

PRESTON LAW Office: CAIRNS Box: 39

Page 2/2

22-095 File B Page 376 of 406

716200348

CS 400 NT

22-095

WARNING: Folded or Mutilated Plans will not be accepted. Plans may be rolled. Information may not be placed in the outer margins.

5. Lodged by

Preston Law Level 1, 59 McLeod Street Cairns QLD 4870 Tel: +61 7 4052 0700 Email: info@prestonlaw.com.au

(Include address phone number reference and Lodger Code)

6. Existing		Create	xd
Description	New Lots	Road	Secondary Interests
ot I on RP742725.	10 & 20		EMTH, EMTI
_ot I on RP745758	10		
ot 9 on RP735336	10		
1		1	
	Description of I on RP742725. Lot I on RP745758	Description New Lots out I on RP742725. 10 & 20 out I on RP745758 10	Description New Lots Road .ot I on RP742725. 10 & 20 ————————————————————————————————————

MORTGAGE ALLOCATIONS

L	Mortgage	Lots Fully Encumbered	Lots Partially Encumbered
	711779171 710387484	20	10 10

ENCUMBRANCE EASEMENT ALLOCATIONS

Easement	Lots to be Encumbered	
601349664 (Emt A on RP722609 and Emts B & C on RP722610)	20	
(Emt G on SP268791)	20	
(Emt F on SP268791)	10	

BENEFIT EASEMENT ALLOCATIONS

	Easement	Lots to be Benefited	
	(Emt F on SP268791)	20	
	(Emt G on SP268791)	10	

Easement F on SP268791, so far as it affects Lot 10, to be extinguished in terms of Sec 87(b) of the Land Title Act 1994.

Easements D & E on RP735336 (Nos. 601071238 & 601071239) are to be surrendered prior to registration of this plan

Lease 702492402 to be surrendered prior to registration of this plan

SP268791 to be registered prior to this plan.

	10 & 20	Allot 4 Subn Sec 145 Allot 3 Subn Sec 145 Por 337 Por 335	I2. Building Format Plans only. I certify that: * As far as it is practical to determine, no part of the building shown on this plan encroaches onto adjoining lots or road:	
	Lots	Orig		
	7. Orig Grant Allocation:		* Part of the building shown on this plan encroaches onto adjoining * lots and road Cadastral Surveyor/Director * Date # delete words not required	
	8. Map Reference : 8064-32121			
	9. Parish: CAIRNS		13. Lodgement Fees: Survey Deposit	\$
	10. County:		Lodgement	\$
			New Titles	\$
			Photocopy Postage	\$
			TOTAL	\$
ile			Number Page 3 Po 6 262379	

. Certificate of Registered Owners or		
I/We NO VILLAS PTY LIMITED A.C		
		RUMENT 711779135
BUNGEE PTY LTD A.C.N. 121		
TRUSTEE UNDE	RINST	RUMENT 710387483
(Names in full)		
* as Registered Owners of this land agree t	o this pla	n and dedicate the Public Use
Land as shown hereon in accordance with	Section 5	0 of the Land Title Act 1994,
* as Lesses of this land agree to this plan.		
Signature of * Registered Owners * Lesse		
BUNGAE DTY LTD ACN	1918	65 763
sch4p4(6) Personal information	sch4p	4(6) Personal informat
		Director
Director		Un E CTUI
NO VILLAS PTY LIMITED AC	N 121	(CO 505
sch4p4(6) Personal information	7	805
	*Owners or a second	
SOLE DIRECTOR		
		5
		Q~ /\ \
		al' 2'
		0. 1
* Rule out whichever is inapplicable	_0	
2. Planning Body Approval	0	
*CAIRNS.REGIONAL.	.COU.N.C.	Ι
hereby approves this plan in accordance with	h the:	
% SUSTAINABLE PLAN	NING	ACT 2009
DATE OF APPLICAT	TON	3 SEPTEMBER 2013
Dated this TWENTY-SEVENTH d	lay of	UGUST 2014
scn4p4(6) Perso		
	GRAHA	TED OFFICER M BOYD, MANAGER
#	DEAPT	OPPENI AND
······#	KEGUL	ATORY SERVICES
★ Insert the name of the Planning Body. % Insert # Insert designation of signatory or delegation	applicable appl	oving legislation.
B. Plans with Community Management Staten	nent ·	4. References :
CMS Number:	uvut.	4. References : Dept File :
Name:		Local Govt : 8/ 3/ 746
22-095		Surveyor: 7363MCD File

The supple of the state of the supple of the

22-095 File B

Jim Soltau & Associates

ABN 28 167 840 337

Jim Soltau & Associates

PO Box 2128

Toowong, QLD 4066

T 07-32026229

M 0418880293

23 January 2015

Waste and Contaminated Land Section c/o Permit and Licence Management Queensland Department of Environment and Heritage Protection 400 George Street Brisbane, Queensland 4000

Dear Sir or Madam.

RE: Auditor Addendum Letter Regarding Subdivision of Lot 1 on RP742725

1.0 Introduction and Background

This summary Addendum Letter has been completed under the Queensland Government Department of Environment and Heritage Protection (EHP) Code of Conduct and guidelines for a Contaminated Land Auditor. This is also in accordance with the provisions of Chapter 7, Part 8 of the *Environmental Protection Act 1994*. The conditions of sch4p4(6) Pes appointment (Approval No. CLA0004) as a Queensland Contaminated Land Auditor (CLA) are pursuant to the provisions of Section 573 of the *Environmental Protection Act 1994*.

The subject site is located at the Cairns Villa Caravan Park, Pease St, Manunda, Queensland. Golder Associates Pty Ltd (Golder) was contracted by sch4p4(6) Personal info to act as the Environmental Consultant and to perform the environmental assessment works at the site. The caravan park site (formerly Lot 1 on RP742725) has been the subject of a number of various environmental investigations, firstly by GHD in 2005 and then since 2007 by Golder after the owners of the caravan park site identified the presence of chlorinated solvents in groundwater.

The Auditor notes that the GHD report included the removal and validation of an underground storage tank (UST). The EPA subsequently removed the whole of the caravan park from the Environmental Management Register (EMR). The site was then re-listed on the EMR for *hazardous contaminant* when contamination was found in the groundwater. The EMR reference number for the site is ID No. 13083 and file No. BNE26227.

Recently, the site has been investigated with the specific objective of delineating the extent of contamination so that the site can be subdivided to allow the uncontaminated portion of the site to be removed from the EMR, while the contaminated portion of the site will remain on the EMR under a Site Management Plan (SMP). To meet this objective, Golders has completed a series of groundwater and soil vapour assessments, with the most recent assessment reported in *Cairns Villa Caravan Park - Final Confirmation of Area Impacted by Chlorinated Solvents* (6 June 2014). All of the relevant Golder reports are included in Golder's submission to EHP dated 23 January 2015.

2.0 Discussion

Based on the results of the Golder assessment, a subdivision plan has been lodged which separates the impacted area (Lot 20 on SP262379) from the clean area of Lot 20 on SP262379 (Attachment K of the Golder submission to EHP). As the Golder cover letter notes, the subdivision plan was recently amended to move the southern boundary of Lot 10 on SP262379 by 5 metres to the north.

The CLA prepared an Auditor Summary Report (10 June 2014) that has been included as Attachment L in the Golder submission to EHP. The report summarises the review of the Golder Associates reports and includes the following discussion regarding the assessment of the location of the southern boundary of proposed Lot 10.

"Southern Boundary

The southern boundary was originally defined by the series on groundwater and soil gas investigations from April 2013. Remedial pumping interruptions associated with sewer repairs are believed to have resulted in a deterioration of conditions in this area detected by groundwater and soil vapour results in October and November 2013, respectively. Subsequent pumping and groundwater monitoring since December 2013 has indicated a significant and sustained improvement in groundwater conditions along the southern boundary.

The soil vapour results on the proposed southern boundary were well below the amended remediation criteria (and below or close to the NEPM interim HILs) in May 2014.

Given the above results and the implemented remedial pumping, the proposed southern boundary is considered to be suitable to define the southern extent of the impacted area requiring subdivision from the remainder of the caravan park site."

The CLA confirms that the analytical results from soil vapour well SVW16 (with all results below the level of reporting) and groundwater well MW 16CP, which are both located on the revised location of the proposed southern boundary, demonstrate that the area to the south of the revised boundary is suitable to be removed from the EMR.

The CLA also confirms that he agrees with the Golder's conclusion that Lot 20 on SP262379is suitable for unrestricted land use and with the recommendation that Lot 20 be removed from the EMR. An Site Management Plan (SMP) will be prepared for Lot 10 in the near future, but the CLA agrees that the removal of Lot 20 from the EMR should not be contingent on an SMP being approved for Lot 10.

If you have any questions, please do not hesitate to contact the undersigned on sch4p4(6) Pers or by email at sch4p3(6) email a

Yours sincerely,

Jim Soltau & Associates

sch4p4(6) Personal information

sch4p4(6) Perso

Principal

Attachment: Statutory Declaration

Jim Soltau & Associates

Auditor Summary Report of the Site Investigations at the Cairns Villa Partment of Er Caravan Park, Pease St, Manunda, **Queensland**

Project No. 20160

Prepared for the Department of Environment and Heritage Protection

10 June 2014

Jim Soltau & Associates

Prepared by:

Jim Soltau & Associates

P.O. Box 2128

Toowong, QLD 4066

-p4(6) Pe Principal

Date of Issue: 10 June 2014

Contents

1.0	Introduction			2		
	1.1	Backgro	ound	2		
	1.2	Role of	the Auditor	2		
2.0	Objecti	ves		3		
3.0	Scope	of Works		4		
4.0	Site De	Site Details				
	4.1	Site Des	scription	5		
		4.1.1	Site Features and Infrastructure			
		4.1.2	Surrounding Land Use	5		
		4.1.3	Geology	5		
		4.1.4	Hydrology / Hydrogeology	5		
	4.2	Site Hist	tory and Previous Investigation Reports	6		
		4.2.1	Summary of Site History From GHD Report	6		
		4.2.2	Summary of Previous Remediation and Assessment Works Conducted by Golder	7		
5.0	Final Confirmation of Area Impacted by Chlorinated Solvents Report					
	5.1	Groundwater Investigation Works				
	5.2	Soil Vapour Investigation Works				
	5.3	Review	of Boundary Results	9		
6.0	QA/QC	review	70, 8	11		
	6.1 RPD Results			11		
	6.2	.2 Trip Blank and Trip Spike Samples				
	6.3	B Laboratory QA/QC				
	6.4	6.4 Summary of QA/QC				
7.0	Conclu	sions		12		
8.0	Assessment Against the Prescribed Criteria			13		
9.0	Statem	ent of Site S	Suitability	15		
10.0	Statement of Limitations			16		
11.0	References			17		

List of Appendices

Appendix A Statutory Declaration

1.0 Introduction

1.1 Background

This summary review has been completed under the Queensland Government Department of Environment and Heritage Protection (EHP) Code of Conduct and guidelines for a Contaminated Land Auditor. This is also in accordance with the provisions of Chapter 7, Part 8 of the *Environmental Protection Act 1994*. The conditions of sch4p4(6)) is appointment as a Queensland contaminated land Auditor (Approval No. CLA0004) are pursuant to the provisions of Section 573 of the *Environmental Protection Act 1994*.

This report summarises the review conducted by sch4p4(6), the approved Third Party Reviewer (now Environmental Auditor) in 2007 for Lot 1 on RP742725, of the report titled *Cairns Villa Caravan Park - Final Confirmation of Area Impacted by Chlorinated Solvents* dated 6 June 2014;

The site is located at the Cairns Villa Caravan Park, Pease St, Manunda, Queensland. Golder Associates Pty Ltd (Golder) was contracted by Mr sch4p4(6) Persor to act as the Environmental Consultant and to perform the environmental assessment works at the site.

Lot 1 on RP742725 is listed on the Environmental Management Register (EMR) for 'hazardous contaminants'. The site is not listed on the Contaminated Land Register (CLR).

The site was investigated in order to delineate the extent of contamination with the aim to subdivide the site and allow for the removal of the uncontaminated portion of the site from the EMR, while the balance of the site remains on the EMR under a Site Management Plan (SMP).

1.2 Role of the Auditor

Mr. sch4p4(6) a Principal at Jim Soltau & Associates, was engaged by Mr sch4p4(6) Persor to act as the Auditor. Generally, the Auditor's role is to facilitate EHP's review of the works performed by Golder and to provide an independent certification of the implementation of the remediation and investigation works at the site with respect to the suitability of the site to be removed from the EMR.

Activities undertaken by the Auditor included:

- A site inspection during the assessment works on 17 February 2010.
- Review of the Golder Final Confirmation of Area Impacted by Chlorinated Solvents report
 and review of quality assurance sampling to confirm the accuracy of results obtained, final
 approval of investigation report.
- Review of a number of Golder reports over the last 5 years regarding progressive groundwater remediation and assessments.
- Production of this Auditor summary report.

2.0 Objectives

The Golder *Final Confirmation of Area Impacted by Chlorinated* Solvents report stated that the overall objective of their report was to demonstrate that the clean area of the caravan park can be removed from the Environmental Management Register (EMR) once the contaminated area is subdivided from the clean areas into two new lot numbers.

Published on Resources Dischosure Loos

Published On Resources Dischosure Dischosure Loos

Published On Resources Dischosure D The Auditor agrees that this was the objective of the assessment works conducted by Golder.

3.0 Scope of Works

The scope of works over five years including the activities of groundwater remediation, groundwater monitoring events and soil vapour monitoring are outlined in the historical reports summarised in **Section 4.2**. The works have cumulated in the soil vapour sampling presented in **Section 5.2** and the results summarised in **Section 5.3**.

The Auditor has assessed that the Golder report was prepared in general compliance with the following documents:

- Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 1: Non volatile and Semi volatile Compounds, AS4482.1, Australian Standard, 2005;
- Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, AS4482.2, Australian Standard, 1999;
- The National Environment Protection (Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1);
- Queensland Department of Environment and Heritage Protection, 2013, Guideline for contaminated land professionals; and
- Queensland Department of Environment and Heritage Protection, 2012, Guideline for assessing a suitably qualified person.

The Auditor notes that the analytical results were compared to both the formerly agreed upon remediation criteria for the site, as well as the amended National Environment Protection (Assessment of Site Contamination) Measure (NEPM) (amended in May 2013). The amended NEPM contains interim soil vapour health investigation levels (HILs) for volatile organic chlorinated compounds (including the contaminants of concern) for various land settings.

The Auditor confirms that these are the appropriate guidelines to reference in order to assess the contamination status of the site.

4.0 Site Details

4.1 Site Description

4.1.1 Site Features and Infrastructure

The location of the site is presented on Figure 1 in the Golder report.

The site is located at Cairns Villa Caravan Park, Pease St, Manunda, Queensland and is located adjacent to a former dry cleaners site owned by Mr sch4p4(6)

The site is relatively flat and sparely vegetated was grass and large trees. Site infrastructure includes a mix of self-contained villas, free standing cabins and more than 50 sites for transit caravans. Other features include the main administration building, a large saltwater swimming pool, game room and a laundromat. The only waste stored on the site is a range of standard domestic waste created by the residents.

The main elements of the site description were presented in the first report completed on the site by GHD in May 2005 (Cairns Villa & Leisure Park, 28 Pease Street, Cairns Site Investigation and Validation Report).

4.1.2 Surrounding Land Use

GHD's description of the surrounding land use was as follows:'

"The site is bounded to the north, east, south and west by the following property:

- » North: The northern most boundary of the site abuts an environmental park that is a large parcel of undeveloped land consisting of large trees and shrubs. The environmental park extends northward terminating at Anderson Street.
- » The site is separated from its eastern occupants by an easement. The easement is an open earthen lined drain that extends along the majority of the eastern boundary and then crosses the site to the south terminating at box culverts passing under Pease Street. Residential property occupies the eastern boundary on the opposite side of the easement along Mayer Street.
- » Residential housing is located along the southern boundary of the site.
- » The western boundary extends directly along a portion of Pease Street encompassing the main site administration/reception building and entry off Pease Street. Directly north of the main reception building is a dry cleaning and launderers business (Kwikcleen) followed by a terra cotta business and residential units up to the intersection. A Shell branded Fuel Service Station is located at the intersection of Pease Street and Anderson Street. The service station is positioned greater than 400 metres to the north of the site.
- » There are a number of small businesses operating along Pease Street opposite the site.

4.1.3 Geology

The Cairns Regional Geology 1:100,000 Department of Natural Resources & Mines (DNR&M) Geological Map Series Data, 2000, indicated the site overlays geology which is a mix of Amphibolite, Phyllite, Mica Schist, Metaarenite, Gniess and Migmatite.

4.1.4 Hydrology / Hydrogeology

The Department of Natural Resources and Mines (DNR&M) does not hold comprehensive records regarding groundwater usage in the area. Data provided by the Department shows that the nearest registered bore is greater than 2 kilometres from the site.

The current site owners installed one groundwater bore approximately 2 years ago to a depth of approximately 42 m midway along the site towards the eastern boundary greater than 500 m from the location of the UST. No drilling records were provided by the site owner in relation to this groundwater bore.

The site is serviced with a reticulated water supply and groundwater usage from the installed bore is limited to irrigation of gardens during drier periods throughout the year."

Surface water and stormwater originating on the site flows into onsite constructed drains and eventually into the large easement drain that cuts directly across the site and along the eastern boundary. The easement flows offsite into the adjoining environmental park to the north."

The Auditor has assessed GHD's description of the site and believes it is appropriate to refer to it in June 2014.

4.2 Site History and Previous Investigation Reports

The caravan park site has been the subject of a number of various investigations, firstly by GHD in 2005 and then since 2007 after the owners of the caravan park site identified the presence of chlorinated solvents in groundwater.

4.2.1 Summary of Site History From GHD Report

As noted in Section 4.1, the first site assessment was conducted by GHD in 2005. The following site history has been taken from the GHD report:

- "Previous site owners of the Cairns Villa and Leisure Park (formally known as the Cole Caravan Park) were consulted to ascertain past operation history of the site. A chronology of site owners and records of their discussion is presented in the following sections.
- » Prior to 1966 the property was a poultry farm operated by the Cole family. The immediate surrounding area was predominantly rural with few residential or established businesses.
- » The Cole Caravan Park was established by the Cole family around the year 1966.
- » Bill Cole reported that two (2) underground fuel storage tanks were installed in the driveway off Pease Street in 1968. According to Bill Cole the tanks were a 1x 500 gallon standard fuel and 1 x 1,000 gallon super fuel tank. Two Golden Fleece fuel bowsers were also installed near the tanks for fuel dispensing.
- » The 500 gallon standard UST was decommissioned in 1972. It was reported that fuel dispensed from this tank contained water at times when the level in the tank was low. The 500 gallon tank was emptied and filled with sand. The associated fuel bowser was removed as part of tank decommissioning. The 1,000 gallon tank and bowser remained operational at the time.
- » The property was purchased from the Cole's by the Olholm's in 1973. The Olholm's continued to operate the site as an ongoing caravan and Villa Park. It is understood that fuel continued to be dispensed from the reported 1,000 gallon tank in the driveway. The Olholm's sold the property to New Concept Developments in 1987.
- » New Concepts Developments, Mr Adrian Walter, reported that fuel dispensing from the remaining UST continued for approximately 12 months after the purchase of the property in 1987. Following this the tank was emptied and the remaining fuel bowser was removed from the site in late 1987. A garden bed was established over the tank and around the location of the former bowsers. The metal frame which provided cover for the bowsers remains in the established garden bed. Prior to selling the property in 1994 New Concept Developments notified Cairns City Council that a UST was located on the property. The reported size of the UST was 17,000 litres, which was subsequently reported on a Flammable and Combustible Liquid Licence issued by Council for the property.

It was confirmed following discussion with an Environmental Protection Agency (EPA) Contaminated Land Officer on 22 November 2004, that EPA notification of a 'notifiable activity' occurring on the site was received from Cairns City Council in 1994 listing the New Concept Developments site on the EMR."

The Auditor notes that the GHD report included the removal and validation of the UST. The EPA subsequently removed the whole of the caravan park from the EMR. The site was then re-listed on the EMR for *hazardous contaminant* when contamination was found in the groundwater as discussed by Golder below. The EMR reference number for the site is ID No. 13083 and file No. BNE26227.

4.2.2 Summary of Previous Remediation and Assessment Works Conducted by Golder

Golder Report 087673045-007-Rev1 (July 2009) provides a summary of investigations prior to commencement of remedial works. Remedial works have been carried out on the caravan park site since late 2009.

The primary contaminants of concern (COCs) at the caravan park site are Tetrachloroethene (PCE) and its breakdown products – Trichloroethylene (TCE) and cis-1,2-dichloroethene (cis DCE). No free phase product has been observed in groundwater samples collected from the caravan park site during previous investigations or subsequent groundwater monitoring events.

The remediation works comprised groundwater extraction using bottom loading pumps in one well within the former dry cleaner site and three wells within the caravan park site. A product recovery trench was also installed in October 2010 along part of the eastern boundary of the former dry cleaner site to extract impacted groundwater and to mitigate movement of impacted groundwater between the sites. Extracted groundwater was disposed of to sewer under the dry cleaner site trade waste permit.

Golder prepared a Site Conceptual Model and Qualitative Risk Assessment report (0867673045-021-R-Rev0) in October 2011 aimed at identifying acceptable remediation criteria to allow removal of the caravan park site from the EMR. This report proposed the use of soil vapour concentrations as the basis of assessing suitability for future unrestricted site use. This assessment method and the agreed remediation criteria were accepted by the Auditor (then Third Party Reviewer [TPR]).

A Delineation Investigation (087673045-033-R-Rev0) was undertaken by Golder dated 20 August 2012. This Delineation Investigation comprised the utilisation of a Membrane Interface Probe (MIP) at 29 locations to provide real-time data to assist in the evaluation of the extent of chlorinated solvent impact. The MIP data was correlated against both groundwater sample concentrations and soil vapour concentrations from existing wells in order to interpret the extent of contamination. This interpreted area was "squared" and aligned against existing property boundaries, where possible, to simplify possible subdivision of this area from the remainder of the caravan park site.

Further to the above, the Auditor requested that confirmation soil gas wells be constructed on the proposed northern and southern boundaries of the subdivision to confirm that the amended remediation criteria was achieved prior to finalisation of these boundaries (the eastern boundary had been previously well defined by the results of investigations and monitoring). The results of subsequent investigations are described in the April 2013 Golder Report (087673045-040-Rev0) and resulted in an increase in the area of impact to the south. The defined area of impact, including additional buffers requested by the Auditor resulted in the proposed subdivision boundaries.

Progress on the proposed subdivision was halted in late April 2013, following the discovery of blocked and broken sewer pipes being used for the disposal of impacted groundwater. The sewer failure and potential impacts to groundwater were described in the June 2013 Golder Report (087673045-041-R-Rev0). It was concluded that the groundwater monitoring results collected since the commencement of groundwater extraction (and disposal via the sewer) were consistent with 'looping' of collected impacted groundwater discharging from sewer pipeline failures. Looping of collected impacted groundwater was also believed to explain the lack of progress by the extraction system to remove impacted groundwater on the caravan park site. Groundwater extraction and disposal to sewer was ceased whilst sewer repairs were conducted.

The proposed subdivision of the impacted portion of the caravan park site was recommenced in late August 2013. At this time, the Auditor requested a status check of current groundwater conditions along the proposed boundaries prior to finalising submissions to EHP. The results of this groundwater sampling and analysis are presented in the Golder letter dated 14 October 2013 (087673045-045-L-Rev0). Some increase in groundwater contaminant concentrations were noted at MW16CP and MW17CP.

In order to address the uncertainty associated with these results and to confirm subdivision boundary locations that report recommended that:

- A bottom loading pump should be installed at MW14CP to collect impacted water detected at this previously identified "hotspot" and intercept possible migration of impact groundwater.
- Soil gas sampling and analysis should be conducted from SVW16 and SVW17 (located adjacent to MW16CP and MW17CP, respectively) to confirm that the concentrations of PCE and TCE at these locations.

Soil gas sampling was conducted on 6 November 2013 and the results are presented in the Golder letter dated 25 November 2013 (087673045-048-L-Rev0). The results indicated soil gas concentrations exceeding the amended remediation criteria at both SVW16 and SVW17. These results suggested that the area of impact may have increased as a result of remedial pumping interruptions associated with sewer repairs and that the proposed subdivision boundary would need to be re-delineated and amended.

5.0 Final Confirmation of Area Impacted by Chlorinated Solvents Report

It is understood that the assessment works were completed in order to allow for the removal of the uncontaminated portion of the site from the EMR, while the balance of the site remains on the EMR under a SMP.

5.1 Groundwater Investigation Works

A groundwater sampling and analysis event was carried out on 19 December 2013 on twelve (12) monitoring wells. The aim of this initial event was to provide an indication of groundwater contaminant levels at this time across the caravan park site.

Additional, four wells were also monitored on a monthly basis. The aim of this monitoring was to provide an indication of improvement in groundwater quality and to guide the timing of soil vapour testing along the proposed southern boundary.

Contaminant concentrations in all wells sampled in December 2013 were well below the highest concentrations previously detected at these locations and did not indicate a significant deterioration in groundwater conditions.

The groundwater results and graphs along the proposed southern boundary show a significant and sustained reduction in PCE and TCE concentrations compared to September 2013 results.

A slight increase in TCE and PCE at MW17CP has occurred since the installation of the pumping well at MW20CP and is believed to indicate localised changes as a result of contaminant recovery pumping rather than a deterioration of groundwater conditions in this area.

5.2 Soil Vapour Investigation Works

The most recent soil vapour sampling was conducted at gas wells SVW16 and SVW17 located on the proposed southern boundary on 12 May 2014.

The soil vapour results at SVW16 and SVW17 confirm PCE and TCE concentrations well below the amended remediation criteria. The TCE concentration at SVW17 was slightly above the NEPM interim HIL, however, a marginal exceedance of this interim investigation level was not considered to be an issue of concern that would warrant further consideration at this site.

5.3 Review of Boundary Results

Northern Boundary

Soil vapour results well below the amended remediation criteria (and below the NEPM interim HILs) were confirmed at soil vapour wells on the proposed northern boundary in October 2012.

Groundwater gauging in April 2013 and December 2013 did not indicate a northward groundwater gradient and therefore the potential for contaminant migration towards this boundary is considered to be negligible. Sampling of groundwater wells in December 2013, near the proposed northern boundary, revealed concentrations of PCE below laboratory detection levels and TCE at concentrations up to $2.9~\mu g/L$.

Given the above results, the proposed northern boundary is considered to be suitable to define the northern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

Eastern Boundary

The eastern boundary was originally defined on the basis of the MIP delineation investigation, consideration of historical groundwater monitoring results and soil vapour results on the proposed eastern boundary in August 2012. The soil vapour results at the eastern boundary were well below the amended remediation criteria (and below the NEPM interim HILs) in July 2012. Groundwater gauging in April 2013 and December 2013 indicate some potential for groundwater movement to the south/south east and therefore the potential for contaminant migration towards this boundary is generally considered to be low with the highest risk at the south eastern end of the proposed subdivision area.

Sampling of groundwater wells in December 2013, near the proposed eastern boundary at the southern end of the site, revealed concentrations of PCE below laboratory detection levels and TCE at concentrations up to $2.5 \, \mu g/L$.

Given the above results and the implemented remedial pumping, the proposed eastern boundary is considered to be suitable to define the eastern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

Southern Boundary

The southern boundary was originally defined by the series on groundwater and soil gas investigations from April 2013. Remedial pumping interruptions associated with sewer repairs are believed to resulted in a deterioration of conditions in this area detected by groundwater and soil vapour results in October and November 2013, respectively. Subsequent pumping and groundwater monitoring since December 2013 has indicated a significant and sustained improvement in groundwater conditions along the southern boundary. The soil vapour results on the proposed southern boundary were well below the amended remediation criteria (and below or close to the NEPM interim HILs) in May 2014.

Given the above results and the implemented remedial pumping, the proposed southern boundary is considered to be suitable to define the southern extent of the impacted area requiring subdivision from the remainder of the caravan park site.

6.0 QA/QC review

6.1 RPD Results

One duplicate was collected during the groundwater monitoring works for a total of twenty four (24) primary samples. All results for the primary and duplicate sample were below the laboratory limit of reporting. The Australian Standard states that one duplicate per 20 primary samples should be collected and analysed. The Golder report did not quite meet this rate of duplicate sampling.

One soil vapour duplicate was collected for QA/QC purposes. No detections were found for the parameters analysed within the field blank.

A number of high RPDs were identified for compounds between the primary sample SVW17and the field duplicate. The field duplicate did not detect the contaminants of concern. As discussed within the report, due to an equipment failure, the field duplicate could not be taken in conjunction with the primary sample and instead had to be taken after the primary had been collected. This method of sampling could have led to the differences observed for some analytes. This outcome was not considered to affect the overall results.

6.2 Trip Blank and Trip Spike Samples

No trip blank, rinsate or trip spike samples were analysed during the groundwater monitoring works.

One soil vapour field blank was collected for QA/QC purposes. No detections were found for the parameters analysed within the field blank.

6.3 Laboratory QA/QC

A review of the laboratory QA / QC reports indicated that there were no non-conformances noted.

The Sample Receipt Notifications did not note any concerns with the batches that were submitted.

6.4 Summary of QA/QC

In summary, all QA/QC data was found to conform with acceptable limits, excepted as noted and discussed. Any outlying results are not expected to affect the outcomes of the assessment works.

Based upon a review of the laboratory and field QA/QC data, the Auditor agrees that the results presented are considered suitable for interpretation.

7.0 Conclusions

Golder presented the following conclusions and recommendations relating to the assessment works conducted at the site:

- The studies completed and summarised in this assessment are considered suitable to define the area of
 chlorinated solvent impact on the existing caravan park property (Lot 1 on RP 742725). This area of impact
 is contained within the boundaries shown of the survey plan. The balance of the existing caravan park site,
 outside of the area of impact, is defined as proposed Lot 20.
- The caravan park site (Lot 1 on RP 742725) is understood to have been previously removed from the EMR in 2006 on the basis of site investigations and the removal and validation of an underground fuel tank. The property was again listed on the EMR following the discovery of chlorinated solvents in groundwater samples in 2007. No other notifiable activities have occurred at the property since its original removal in 2006. Therefore the balance of the existing caravan park site (proposed Lot 20) is considered to be suitable for unrestricted use and it is recommended that this allotment be removed from the EMR on its gazettal.
- It is further recommended that a Site Management Plan be prepared for the former drycleaner site and the area excised from the caravan park to manage ongoing groundwater and contamination control measures within these sites.

The Auditor agrees with the conclusions and recommendations as presented by Golder.

8.0 Assessment Against the Prescribed Criteria

An assessment has been undertaken by the Auditor of the GHD 2005 report and various Golder assessment reports against the Prescribed Criteria under Section 115C of the Environmental Protection Regulations 2008. The auditor notes that the Prescribed Criteria have been summarised from the GHD and Golder reports in this audit report and the list below refers to the references in this report. The results of the assessment are outlined in *Table 8.1* below.

Table 8.1: Assessment of Report Against the Prescribed Criteria

Pres	cribed Criteria	Section of Auditor's report summarising compliance with the prescribed criteria	Auditor confirmation that criteria has been satisfied			
a) the report or plan accurately includes the following information about the site, the subject of the report or plan —						
(i)	the reasons for listing the site on the environmental management register or contaminated land register;	Section 4.2	Yes			
(ii)	a description of all surface and subsurface infrastructure on the site, including details of the location, size and type of the infrastructure;	Summarised in Section 4.1.1.	Yes			
(iii)	 a description of the surrounding area of the site, including the following— (A) a description of all category A environmentally sensitive areas in the surrounding area; (B) a description of all category B environmentally sensitive areas in the surrounding area; (C) the location of all water, watercourses and wetlands in the surrounding area; (D) the location of all stormwater drainage in the surrounding area; (E) a description of land uses in the surrounding area, including sensitive land uses that may affect the safety of the site or cause a risk to human health or another part of the environment; (F) a description of all activities carried out in the surrounding area that may affect the safety of the site or cause a risk to human health or another part of the environment; 	Summarised in Section 4.1.2. A search of environmentally sensitive areas did not identify any Category A or Category B environmentally sensitive areas within 500 metres of the site.	Yes			
(iv)	for any waste disposed of, or stored on the site, that contains, or may potentially contain, hazardous contaminants, details of the location, volume and type of waste disposed of, or stored, on the site;	Summarised in Section 4.1.1.	Yes			
(v)	for the waste mentioned in paragraph (iv), details of any potential contamination of the site caused by disposing or storing the waste on the site;	N.A.	Yes			
(vi)	a description of the geology and hydrogeology of the site;	Summarised in Sections 4.1.3. and 4.1.4.	Yes			
(vii)	details of any environmentally relevant activities or notifiable activities carried out on the site, including the materials used and waste produced during the carrying out of the activities;	N.A.	Yes			
(viii)	details of any earthworks carried out on the site, including the materials used and waste produced during the earthworks;	N.A. No earthworks were carried out at the site	Yes			

(ix)	if work was carried out on the site to remediate contaminated land— (A) the contamination levels recorded on the site before the work was carried out; and (B) the contamination levels recorded on the site after the work was carried out;	Section 5.0 and Section 6.0	Yes
b)			
(i)	if the report or plan provides evidence that the site is suitable for a stated use, whether the site is suitable for that stated use; and	Sections 7.0 and 9.0	Yes
(ii)	whether the site is contaminated in a way that is a risk to another part of the environment or human health; and	Sections 4.2.2 and 5.0	Yes
(iii)	if the report or plan provides evidence that the site is contaminated, the extent to which the site is contaminated and the uses that may be suitable for the site; and	Sections 7.0 and 9.0. An SMP will be prepared by Golder for proposed Lot 10 where contamination remains.	Yes
(iv)	if the plan sets out the objectives to be achieved and maintained under the plan— (A) the proposed objectives are appropriate for the site; and (B) the proposed methods to achieve and maintain the objectives are appropriate for the site; and	Sections 7.0 and 9.0. An SMP will be prepared by Golder for proposed Lot 10 where contamination remains.	Yes
(v)	if the plan sets out monitoring and reporting compliance measures for the site, the reporting and compliance measures are appropriate for the site.	Section 9.0., An SMP will be prepared by Golder for proposed Lot 10 where contamination remains.	Yes

9.0 Statement of Site Suitability

The Auditor has completed the review of the Golder report entitled Cairns Villa Caravan Park - Final Confirmation of Area Impacted by Chlorinated Solvents. Based on this review, the Auditor concludes that the report complies with the prescribed criteria under Section 115C of the Environmental Protection Regulations 2008 and adequately addresses the potential for contamination at the site and advises that, in the opinion of the Auditor, proposed Lot 20 is suitable for unrestricted use and removal from the EMR, while the balance of the site (proposed Lot 10) and an and a second street of the second street of should remain on the EMR under a SMP. Groundwater monitoring should continue at a minimum of one monitoring event per year on proposed Lot 10.

10.0 Statement of Limitations

Jim Soltau & Associates (JSA) has chosen an appropriate level of effort to prepare this report by the Auditor. The activities performed, constitute all activities, appropriate and necessary under the circumstances, to produce the report. Based on the inspection of the site and the Golder reports, it is JSA's opinion that the potential environmental liabilities associated with the site are as discussed in these reports.

We do not assume any liability for misrepresentation or for items not visible, accessible or present during the site inspections and/or meetings. We also do not assume any liability for materials or works, which are imported onto or undertaken on the site following the date of the assessment. There is no investigation that is thorough enough to preclude the presence of material, which presently, or in the future, may be considered hazardous at the site.

Furthermore, to completely understand the recommendations and conclusions outlined in site investigation documents, they must be read in their entirety. This is because these reports are site-specific with relevant information contained in the body of the reports as well as supporting tables and documentation.

Opinions and judgements expressed herein, which are based on our understanding and interpretation of current regulatory standards, should not be construed as legal opinions. Conclusions contained in this report are based upon information, data and reports provided by others and on the assumption that all relevant information has been provided to JSA by Golder. Where assessments of the works conducted to reduce or mitigate any environmental liability identified in this report are made, such assessments are based upon the information available at the time.

JSA has prepared this report solely for Mr sch4p4(6) Person and the Queensland Department of Environment and Heritage Protection in accordance with generally accepted consulting practices and for the intended purposes. This report may not be relied upon by any other party without the explicit written agreement of JSA, which may be given to potential future purchasers of the site on request. No other warranty, expressed or implied, is made as to the professional advice included in this report.

11.0 References

Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 1: Non volatile and Semi volatile Compounds, AS4482.1, Australian Standard, 2005;

Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, AS4482.2, Australian Standard, 1999;

The National Environment Protection (Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1);

Queensland Department of Environment and Heritage Protection, 2013, *Guideline for contaminated land professionals*;

Queensland Department of Environment and Heritage Protection, 2012, *Guideline for assessing a suitably qualified person;*

GHD Cairns Villa & Leisure Park, 28 Pease Street, Cairns Site Investigation and Validation Report (May 2005);

Golder Associates Pty Ltd, Cairns Villa Caravan Park - Final Confirmation of Area Impacted by Chlorinated Solvents, dated 30 May 2014.

Golder Associates Pty Ltd, Groundwater Assessment Pease Street (July 2009)

Golder Associates Pty Ltd, Conceptual Site Model & Qualitative Risk Assessment, Caravan Park Site Remediation, Pease St. Manunda dated October 2011.

Golder Associates Pty Ltd, Delineation Investigation, Cairns Villa Caravan Park dated 20 August 2012.

Golder Associates Pty Ltd, *Delineation Investigation September 2012 - March 2013, Cairns Villa Caravan Park*, dated 10 April 2013.

Golder Associates Pty Ltd, Report on Potential Groundwater Impacts Associated with Sewer Failures, Kwikleen Dry Cleaners/Cairns Villa Caravan Park, Pease Street, Cairns, dated 14 June 2013.

Golder Associates Pty Ltd, *Amended Boundary Groundwater Monitoring September 2013*, dated 14 October 2013.

Golder Associates Pty Ltd, *Soil Vapour Monitoring at SVW16 and SVW17 November 2013, Pease St. Caravan Park*, dated 25 November 2013.

Published on Resources Dischosure Loss

Published on Republished on Republished on Resources Dischosure Loss

Published on Republished on Republished on Resources Dischosure Loss

Published on Republished on Republis

Appendix A

Statutory Declaration Published on Resources Dischosure L

STATUTORY DECLARATION

Address of Site Investigated: 28 Pease Street, Manuda, (Cairns) QLD

Real Property Description: Lot 1 on SP742725, County of Nares, Parish of Cairns

Title of Reports: Auditor Summary Report of the Site Investigations at the

Cairns Villa Caravan Park, Pease Street, Manuda,

Queensland (10 June 2014) and Auditor Addendum Letter Regarding Subdivision of Lot 1 on RP742725 (23 January

2014).

I, sch4p4(6)P, of Jim Soltau & Associates, do solemnly and sincerely declare that:

- I was the Environmental Auditor and report preparer of the subject report which summarises the remediation and investigation of the subject site located;
- I am a member of Environmental Institute of Australia and New Zealand (EIANZ) and my
 qualifications and experience relevant to this remediation and validation have been presented
 to the Environmental Protection Agency as required under Appendix 6 of the Environmental
 Protection Agency Draft Guidelines for the Assessment and Management of Contaminated
 Land in Queensland;
- I have not knowingly included any false, misleading or incomplete information in the reports;
- I have not knowingly failed to reveal any relevant information or document to the administering authority; and

I certify that:

- the Auditor summary report and the various Golder Associates reports summarised in the Auditor report address the relevant matters for the remediation and investigation processes and are factually correct;
- the opinions expressed in the Auditor summary report are honestly and reasonably held;
- the health and environmental risks associated with the contamination have been addressed;
 and
- the newly subdivided Lot 20 on SP262379 is suitable for low density residential use and is suitable to be removed from the Environmental Management Register (EMR) while Lot 10 on SP262379 is to remain on the EMR and is suitable to be managed under a Site Management Plan.

I make this solemn declaration conscientiously believing the same to be true and by virtue of the provisions of the *Oaths Act 1867*.

Signature

sch4p4(6) Personal information

sch4p4(6) Personal

Name

Taken and Declared before me at Brisbane this 23rd day of January 2015.

Witness (Justice of the Peace/Commissioner for Declarations)

Name (Print Name)

Signature

ACRORA MARIA STEPHENS
sch4p4(6) Personal information

Published on Resources Dischosure Loss

Published on Republished on Republished on Resources Dischosure Loss

Published on Republished on Republished on Resources Dischosure Loss

Published on Republished on Republis

